版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市榆树市2025届数学八年级第一学期期末综合测试模拟试题模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列说法中错误的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的对应角相等 D.全等三角形的角平分线相等2.点P(-2,-3)关于x轴的对称点为()A. B. C. D.3.若,则分式等于()A. B. C.1 D.4.已知直线,一个含角的直角三角尺如图叠放在直线上,斜边交于点,则的度数为()A. B. C. D.5.点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是()A. B. C. D.6.下列计算中,正确的是()A.x3•x2=x4 B.x(x-2)=-2x+x2C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x47.已知一组数据6、2、4、x,且这组数据的众数与中位数相等,则数据x为()A.2 B.4 C.6 D.不能确定8.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°9.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角10.已知一次函数,图象与轴、轴交点、点,得出下列说法:①A,;②、两点的距离为5;③的面积是2;④当时,;其中正确的有()A.1个 B.2个 C.3个 D.4个11.使(x2+px+8)(x2﹣3x+q)乘积中不含x2和x3项的p,q的值分别是()A.p=3,q=1 B.p=﹣3,q=﹣9 C.p=0,q=0 D.p=﹣3,q=112.下列命题是真命题的是()A.同位角相等 B.两直线平行,同旁内角相等C.同旁内角互补 D.平行于同一直线的两条直线平行二、填空题(每题4分,共24分)13.化简:=_______________.14.分解因式:(x2+4)2﹣16x2=_____.15.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)16.分解因式:ab2﹣4ab+4a=.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,BD=3,则DE=_______.18.如图,已知在锐角△ABC中,AB.AC的中垂线交于点O,则∠ABO+∠ACB=________.三、解答题(共78分)19.(8分)棱长分别为,两个正方体如图放置,点在上,且,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________20.(8分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.21.(8分)在平面直角坐标系中的位置如图所示,已知点坐标为(1)作关于轴对称的图形;(2)将向右平移4个单位,作出平移后的;(3)在轴上求作一点,使得值最小,并写出点的坐标(不写解答过程,直接写出结果)22.(10分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.23.(10分)先化简,再求的值,其中x=1.24.(10分)如图,在正五边形ABCDE中,请仅用无刻度的直尺,分别按下列要求作图。(1)在图1中,画出过点A的正五边形的对称轴;(2)在图2中,画出一个以点C为顶点的720的角.25.(12分)(l)观察猜想:如图①,点、、在同一条直线上,,且,,则和是否全等?__________(填是或否),线段之间的数量关系为__________(2)问题解决:如图②,在中,,,,以为直角边向外作等腰,连接,求的长。(3)拓展延伸:如图③,在四边形中,,,,,于点.求的长.26.阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据全等三角形的性质即可解决问题.【详解】解:全等三角形的对应边相等,对应角相等,全等三角形的面积相等,故、、正确,故选.【点睛】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【分析】关于x轴对称的点,横坐标不变,纵坐标变为相反数【详解】∵点P(-2,-3),∴关于x轴的对称点为(-2,3).故选D.【点睛】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、D【分析】由分式的加减法法则,“异分母的分式相加减,先通分,化为同分母的分式,然后分母不变,把分子相加减”可知,又,即可求解.【详解】解:,又∵,故原式=-1.故选:D.【点睛】本题主要考查分式的加减,熟悉掌握分式的加减法法则是关键.4、D【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB.【详解】∵含角的直角三角尺∴∠A=30°,∠ACB=60°∵∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.5、B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵2-3=-1,-1+2=1,∴得到的点的坐标是(-1,1).故选B.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.6、B【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.【详解】解:A、x3•x2=x5,错误;B、x(x-2)=-2x+x2,正确;C、(x+y)(x-y)=x2-y2,错误;D、3x3y2÷xy2=3x2,错误;故选:B.【点睛】本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.7、B【分析】分别假设众数为2、4、6,分类讨论、找到符合题意的x的值;【详解】解:若众数为2,则数据为2、2、4、6,此时中位数为3,不符合题意;若众数为4,则数据为2、4、4、6,中位数为4,符合题意,若众数为6,则数据为2、4、6、6,中位数为5,不符合题意.故选:B.【点睛】本题主要考查众数、中位数的定义,根据众数的可能情况分类讨论求解是解题的关键.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.8、B【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.9、D【解析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.【点睛】考核知识点:不等式的性质、对顶角的性质、三角形和补角的性质.10、B【分析】①根据坐标轴上点的坐标特点即得;②根据两点之间距离公式求解即得;③先根据坐标求出与,再计算面积即可;④先将转化为不等式,再求解即可.【详解】∵在一次函数中,当时∴A∵在一次函数中,当时∴∴①正确;∴两点的距离为∴②是错的;∵,,∴∴③是错的;∵当时,∴,∴④是正确的;∴说法①和④是正确∴正确的有2个故选:B.【点睛】本题主要考查了一次函数与坐标轴的交点、两点距离公式及一次函数与不等式的关系,熟练掌握坐标轴上点的坐标特点及一次函数与不等式的相互转化是解题关键.11、A【分析】先根据多项式乘以多项式把展开,再合并同类项,让和项的系数为0即可.【详解】原式=x4+(﹣3+p)x3+(q﹣3p+8)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)乘积中不含x2和x3项,∴﹣3+p=0,q﹣3p+8=0,∴p=3,q=1,故选A.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解题的关键.12、D【分析】利用平行线的性质及判定定理进行判断即可.【详解】A、两直线平行,同位角才相等,错误,是假命题;B、两直线平行,同旁内角互补,不是相等,错误,是假命题;C、两直线平行,同旁内角才互补,错误,是假命题;D、平行于同一直线的两条直线平行,是真命题;故选:D.【点睛】主要考查了命题的真假判断,以及平行线的判定定理.真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.二、填空题(每题4分,共24分)13、3【分析】根据分数指数幂的定义化简即可.【详解】解:故答案为:3【点睛】本题主要考查了分数指数幂的意义,熟知分数指数幂意义是解题关键.14、(x+1)1(x﹣1)1【分析】先利用平方差公式分解,再利用完全平方公式进行二次因式分解.【详解】解:(x1+4)1﹣16x1=(x1+4+4x)(x1+4﹣4x)=(x+1)1(x﹣1)1.故答案为:(x+1)1(x﹣1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,15、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.16、a(b﹣1)1.【解析】ab1﹣4ab+4a=a(b1﹣4b+4)﹣﹣(提取公因式)=a(b﹣1)1.﹣﹣(完全平方公式)故答案为a(b﹣1)1.17、1【分析】根据角平分线的定义可得∠DBE=∠CBE,然后根据平行线的性质可得∠DEB=∠CBE,从而得出∠DBE=∠DEB,然后根据等角对等边即可得出结论.【详解】解:∵BE平分∠ABC,∴∠DBE=∠CBE∵DE∥BC,∴∠DEB=∠CBE∴∠DBE=∠DEB∴DE=DB=1故答案为:1.【点睛】此题考查的是等腰三角形的判定、平行线的性质和角平分线的定义,掌握等角对等边、平行线的性质和角平分线的定义是解决此题的关键.18、90°.【分析】由中垂线的性质和定义,得BA=BC,BE⊥AC,从而得∠ACB=∠A,再根据直角三角形的锐角互余,即可求解.【详解】∵BE是AC的垂直平分线,∴BA=BC,BE⊥AC,∴∠ACB=∠A.∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°.故答案为:90°.【点睛】本题主要考查垂直平分线的性质以及直角三角形的性质定理,掌握垂直平分线的性质,是解题的关键.三、解答题(共78分)19、【分析】根据两点之间直线最短的定理,将正方体展开即可解题.【详解】将两个立方体平面展开,将面以为轴向上展开,连接A、P两点,得到三角形APE,AE=4+5=9,EP=4+1=5,AP==cm.【点睛】本题考查空间思维能力.20、(1)y=﹣x+1,点B的坐标为(1,0);(2)①2n﹣1;②(2,3);③3,1).【分析】(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=﹣x+1,令y=0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=PD•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(3,1).如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(0,2)舍去.综上所述点C的坐标为(3,1).【点睛】本题考查了一次函数的几何问题,掌握解一次函数的方法以及全等三角形的性质以及判定定理是解题的关键.21、(1)见解析;(2)见解析;(3)见解析;点坐标为.【分析】(1)作各个顶点关于轴对称的对称点,顺次连接起来,即可;(2)将向右平移4个单位后的对应点,顺次连接起来,即可;(3)作出关于轴的对称点,连接,交轴于点,即可.【详解】(1)如图所示;(2)如图所示;(3)如图所示,作出关于轴的对称点,连接,交轴于点,点坐标为.【点睛】本题主要考查平面直角坐标系中,图形的轴对称与平移变换及点的坐标,掌握轴对称图形的性质,是解题的关键.22、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有1辆.【解析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据题目中的等量关系“①甲种货车每辆车装的件帐篷数=乙种货车每辆车装的件帐篷数+20;②甲种货车装运1000件帐篷所用车辆=乙种货车装运800件帐蓬所用车辆”,列出方程组求解即可;(2)可设甲种汽车有m辆,乙种汽车有(16﹣m)辆,根据等量关系:甲车装运帐篷数量+乙车装运帐篷数量=这批帐篷总数量1190件,列出方程求解即可.【详解】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有解得经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有m辆,乙种汽车有(16﹣m)辆,依题意有100m+80(16﹣m﹣1)+50=1190,解得m=12,16﹣m=16﹣12=1.故甲种汽车有12辆,乙种汽车有1辆.考点:分式方程的应用;二元一次方程组的应用.23、,2.【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式===当x=2时,原式=2.考点:分式的化简求值.24、见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度专利实施许可合同标的为新型发明技术的应用2篇
- 二零二四年度商铺转让合同:商铺产权及经营权转让协议
- 二零二四年企业经营业绩股权激励合同
- 二零二四年度电力工程建设的施工总承包合同2篇
- 2024年度建筑工程设计与施工管理合同3篇
- 二零二四年度园林景观设计合同标的及服务内容
- 二零二四年度5G通信设备采购合同3篇
- 2024版文化娱乐活动策划合同
- 消毒灭菌的协议书模板
- 2024版二手房交易过户与登记配套服务合同2篇
- GB/T 19342-2024手动牙刷一般要求和检测方法
- 洗车场清淤合同范本
- 2025届江苏省无锡市天一中学物理高一第一学期期末监测试题含解析
- 2024年江西宜春职业技术学院面向社会招聘全日制硕士和博士研究生46人历年管理单位遴选500模拟题附带答案详解
- 广东省佛山市南海区2024-2025学年六年级上学期11月期中语文试题
- 北京市丰台区2024-2025学年高二上学期11月期中考试生物试题 含解析
- 2024年高考真题-历史(福建卷) 含答案
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 2024年教师资格考试小学面试全科试题及解答参考
- 2024美团外卖服务合同范本
- 选择性必修第一册人教A版2024-2025学年上学期期中高二数学模拟测试卷含答案
评论
0/150
提交评论