版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市祯祥初级中学2025届数学八上期末教学质量检测模拟试题质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,中,D为AB上一点,E为BC上一点,且,,则的度数为()A.50° B.60° C.70° D.75°2.下列分解因式正确的是()A. B.C. D.3.如图,中,,,则的度数为()A. B. C. D.4.如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接,其中有:①;②;③;④,四个结论,则结论一定正确的有()个A.1个 B.2个 C.3个 D.4个5.下列四个手机APP图标中,是轴对称图形的是()A. B. C. D.6.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80° C.65° D.60°7.如果分式在实数范围内有意义,则的取值范围是()A. B. C.全体实数 D.8.计算的结果是()A. B. C. D.9.某校组织开展了“吸烟有害健康”的知识竞赛,共道竞赛题,选对得分,不选或选错扣分,小英得分不低于分,设她选对了道题,则根据题意可列不等式为()A. B.C. D.10.下列命题的逆命题不是真命题的是()A.两直线平行,内错角相等B.直角三角形两直角边的平方之和等于斜边的平方C.全等三角形的面积相等D.线段垂直平分线上的点到这条线段两端点的距离相等二、填空题(每小题3分,共24分)11.若实数a,b满足,则a﹣b的平方根是_____.12.如图,在RtABC中,∠C=90°,BD是ABC的平分线,交AC于D,若CD=n,AB=m,则ABD的面积是_______.13.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.14.因式分解:x2﹣49=________.15.如图,已知直线经过原点,,过点作轴的垂线交直线于点,过点作直线的垂线交轴于点;过点作轴的垂线交直线于点,过点作直线的垂线交轴于点按此作法继续下去,则点的坐标为__________.16.如图,在△ABC中,D是BC上的点,且AB=AC,BD=AD,AC=DC,那么∠B=_____.17.已知的值为4,若分式中的、均扩大2倍,则的值为__________.18.若和是一个正数的两个平方根,则这个正数是__________.三、解答题(共66分)19.(10分)按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.(3)已知:线段a和b,求作:等腰三角形,使等腰三角形的底边长为a,底边上的高的长为b.20.(6分)如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.21.(6分)如图所示,四边形ABCD中AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由22.(8分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.23.(8分)先化简:,然后从的范围内选取一个合适的整数为的值代入求值.24.(8分)如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.25.(10分)如图,在平面直角坐标系xOy中,A(-3,4),B(-4,1),C(-1,1).(1)在图中作出△ABC关于x轴的轴对称图形△A′B′C′;(2)直接写出A,B关于y轴的对称点A″,B″的坐标.26.(10分)如图,在平面直角坐标系中,点,;(1)作关于轴的对称图形(点、、的对应点分别是、、)(2)将向右平移2个单位长度,得到(点、、的对应点分别是、、)(3)请直接写出点的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:B.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.2、C【解析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.3、B【分析】设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
∴∠B+19°=x+14°,
∴∠B=x-5°,
∵AB=AC,
∴∠C=∠B=x-5°,
∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
∵AD=DE,
∴∠DEA=∠DAE=x+9°,
在△ADE中,由三角形内角和定理可得
x+x+9°+x+9°=180°,
解得x=54°,即∠ADE=54°,
∴∠DAE=63°
故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.4、A【分析】由旋转的性质即可判定①③结论错误,②无法判定,通过等角转换即可判定④正确.【详解】由旋转的性质,得AC=CD,AC≠AD,此结论错误;由题意无法得到,此结论错误;由旋转的性质,得BC=EC,BC≠DE,此结论错误;由旋转的性质,得∠ACB=∠DCE,∵∠ACB=∠ACD+∠DCB,∠DCE=∠ECB+∠DCB,∴∠ACD=∠ECB∵AC=CD,BC=CE∴∠A=∠CDA=(180°-∠ECB),∠EBC=∠CEB=(180°-∠ECB)∴,此结论正确;故选:A.【点睛】此题主要考查旋转的性质,熟练掌握,即可解题.5、B【分析】根据轴对称定义进行判断即可.【详解】解:根据轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.由此定义可知,B满足定义条件.故本题正确答案为B.【点睛】本题主要考查轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.6、A【详解】解:如图,∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°.∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°.∵∠3=∠6,∴∠3=70°.故选A.7、A【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:,,故选A.【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.8、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【详解】.故选:A.【点睛】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.9、B【分析】根据题意可知最后的得分为答对的每题得5分,再扣掉错误的每题2分,之后根据题意列不等式即可.【详解】解:因为小英选对了题,所以这部分得分为,可知错误的题数为,需要被扣掉分数为,且不低于60分,即分,故可列式;故选:B.【点睛】本题是一元一次不等式的应用,根据题意正确得出:最后得分=加分-减分,加分=答对的题目数×5,扣分=答错的题目数×2,即可解答本题.10、C【解析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、逆命题为:内错角相等,两直线平行,是真命题,故本选项不符合;B、逆命题为:当一边的平方等于另两边平方的和,此三角形是直角三角形,是真命题,故本选项不符合;C、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项符合;D、逆命题为:到线段两端点距离相等的点在线段的垂直平分线上,是真命题,故本选项不符合.故选:C.【点睛】本题考查的是原命题和逆命题,熟练掌握平行的性质和三角形的性质以及垂直平分线是解题的关键.二、填空题(每小题3分,共24分)11、±1【分析】根据和有意义得出a=5,b=﹣4,再代入求解即可.【详解】∵和有意义,则a=5,故b=﹣4,则,∴a﹣b的平方根是:±1.故答案为:±1.【点睛】本题考查了求平方根的问题,掌握平方根的性质以及解法是解题的关键.12、【分析】由已知条件,根据角平分线的性质,边AB上的高等于CD的长n,再由三角形的面积公式求得△ABD的面积.【详解】解:∵BD是∠ABC的平分线,∠C=90°,
∴点D到AB的距离为CD的长,
∴S△ABD=.
故答案为:.【点睛】本题考查了角平分线的性质和三角形面积的计算.本题比较简单,直接应用角平分线的性质进行解题,属于基础题.13、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.14、(x﹣7)(x+7)【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解)【详解】解:可以直接用平方差分解为:﹣49=(x﹣7)(x+7).故答案为:(x﹣7)(x+7)15、(25,0)【分析】根据∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OMn与OM的关系,再根据点Mn在x轴上写出坐标,进而可求出点M2坐标.【详解】∵∠MON=60°,NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°-60°=30°,∴ON=2OM,OM1=2ON=4OM=22•OM,、同理,OM2=22•OM1=(22)2•OM,…,OMn=(22)n•OM=22n•2=22n+1,所以,点M2的坐标为(25,0);故答案为:(25,0).【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、36°【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ACD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.【详解】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.故答案为:36°.【点睛】本题考查了等腰三角形等边等角的性质,三角形外角的性质,三角形内角和定理,掌握等腰三角形的性质是解题的关键.17、1【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【详解】解:分式中的x、y均扩大2倍得:=2×4=1,
故答案为:1.【点睛】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18、1【分析】先根据一个正数有两个平方根且互为相反数,得出两个平方根之和为0,进而列方程求出的值,再将的值代入或并将结果平方即得.【详解】∵和是一个正数的两个平方根∴解得:当时∴∴∴这个正数是1.故答案为:1.【点睛】本题考查了平方根的性质,解题关键在于合理运用一个正数有两个平方根且互为相反数列出方程求解参数,求这个正数而非平方根这是易错点.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析【分析】(1)分别以A、B为圆心,以大于AB为半径画弧,两弧交于两点,过这两点作直线即可;
(2)根据已知角的角平分线画法,画出即可;(3)作AB=a,作AB的垂直平分线MN,垂足为D,在DM上截取DC=b,连接AC、BC,即可得等腰三角形.【详解】(1)如图所示,直线MN即为所求.(2)如图所示,OC即为所求作的∠AOB的平分线.(3)如图△ABC即为所求.【点睛】本题考查线段垂直平分线和角平分线的画法、作一条直线等于已知直线等知识点,熟悉线段垂直平分线的作法和等腰三角形的判定和性质.能正确画出图形是解题关键.20、(1)见解析;(2)∠ADC=105°【分析】(1)根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再根据SAS即可证得结论;(2)根据全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可求出∠BOD的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE与△CAD中,∵AB=AC,∠BAE=∠C,AE=CD,∴△ABE≌△CAD(SAS);(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BOD=∠ABO+∠BAO=∠CAD+∠BAO=∠BAC=60°,∴∠ADC=∠OBD+∠BOD=45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.21、证△ABE≌△ADF(AD=AB、AE=AF)【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.22、详见解析.【分析】先由角平分线的性质得出CD=CE,再由SAS证明△ADC≌△BEC,得出对应边相等即可.【详解】证明:∵OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,∴CD=CE,∠ADC=∠BEC=90°,在△ACD和△BCE中,∴△ADC≌△BEC(SAS),∴AC=CB.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质;证明三角形全等得出对应边相等是解决问题的关键.23、,当时,原式=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x的值代入计算即可求出值.【详解】原式====,∵满足的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=,当x=-2时,原式=.24、(1)A,y轴;B,y=x;(2)y=3x;(3)存在.由于,理由见解析.【解析】(1)由轴对称的性质可得出结论;
(2)连接OD,求出OD=,设点P(,2),PA′=,PC=,CD=1.可得出()2=(2)2+12,解方程可得解x=.求出P点的坐标即可得出答案;
(3)可得出点D关于轴的对称点是D′(2,-1),求出直线PD′的函数表达式为,则答案可求出.【详解】(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,
OP所在的直线是y轴;
当点P在C点时,
∵∠AOC=∠BOC=45°,
∴A′点的位置关系是点B,
OP所在的直线表达式是y=x.
故答案为:A,y轴;B,y=x;
(2)连接OD,
∵正方形AOBC的边长为2,点D是BC的中点,
∴OD=.
由折叠的性质可知,OA′=OA=2,∠OA′D=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年建筑工程施工合同标的概述
- 二零二四年艺术品买卖合同(古董收藏)
- 二零二四年农药企业并购合同
- 地面硬化合同协议书(2篇)
- 医院皮试协议书(2篇)
- 口腔技术入股股份协议书(2篇)
- 集装箱安全购销合同
- 特价鞋购销合同
- 超市消费合同权益分析
- 果品买卖协议样式样本
- 原画师职业生涯规划书
- 2023旅游产品体系及创新趋势研究报告
- Unit15Wheresmybone(课件)Lesson1新概念英语青少版StarterA教学课件
- 应用流体力学智慧树知到课后章节答案2023年下北京石油化工学院
- 烟草的生长发育
- 员工工作考核评分标准表
- 苏教版六年级科学上学期第四单元探索宇宙质量测试卷(二)附答案
- 国家开放大学《公共政策概论》形考任务1-4参考答案
- 第一单元 《项目二:探究计算机中数据表示-认识数据编码》说课课件 2023-2024学年沪科版(2019)高中信息技术必修1
- 学习交流杂物电梯新检验规程课件
- Python实战之数据库应用和数据获取-教学大纲
评论
0/150
提交评论