2022-2023学年高二数学苏教版2019选择性试题7.3组合(原卷版)_第1页
2022-2023学年高二数学苏教版2019选择性试题7.3组合(原卷版)_第2页
2022-2023学年高二数学苏教版2019选择性试题7.3组合(原卷版)_第3页
2022-2023学年高二数学苏教版2019选择性试题7.3组合(原卷版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、单选题1.下列问题中是组合问题的个数是()①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任取出两个数求积;④从1,2,3,…,9中任取出两个数求差或商.A.1B.2C.3D.42.从10名学生中挑选出3名学生参加数学竞赛,不同的选法有()A.种B.3!C.种D.以上均不对3.()A.B.C.D.4.某高三年级在安排自习辅导时,将6位不同学科的老师分配到5个不同班级进行学科辅导,每个班级至少一位老师,则所有不同的分配方案的种数为()A.3600B.1800C.720D.6005.某学校为了迎接市春季运动会,从由5名男生和4名女生组成的田径训练队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的选法种数为()A.85B.86C.9D.906.开学伊始,甲、乙、丙、丁四名防疫专家分别前往A,B,C三所中学开展防疫知识宣传,若每个学校至少安排一名专家,且甲必须安排到A中学,则不同的安排方式有()A.6种B.12种C.15种D.18种7.将2个红球、2个白球、1个绿球放入编号分别为①②③的三个盒子中,其中,两个盒子各放1个球,另外一个盒子放3个球,这5个球除颜色外其他都一样,则不同的放法有()A.24种B.30种C.62种D.41种8.如图,一圆形信号灯分成A,B,C,D四块灯带区域,现有4种不同的颜色供灯带使用,要求在每块灯带里选择1种颜色,且相邻的2块灯带选择不同的颜色,则不同的信号总数为().A.96B.84C.60D.489.没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A,B,C三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有()A.1176B.2352C.1722D.130210.某次足球赛共8支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组4队进行单循环比赛,以积分和净胜球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名进行主、客场交叉淘汰赛(每两队主、客场各赛1场),决出胜者;(3)决赛:两个胜队参加,比赛1场,决出胜负.则全部赛程共需比赛的场数为()A.15B.16C.17D.1811.某校为统筹推进以德智体美劳“五育并举+教师教育”为特色的第二课堂养成体系,引导学生们崇尚劳动、尊重劳动者、提高劳动素养,设置以劳动周的形式开展劳育工作的创新实践.学生可以参加“民俗文化”“茶艺文化”“茶壶制作”“音乐欣赏”“蔬菜种植”“打印”这六门劳动课中的一门.则甲、乙、丙、丁这4名学生至少有3名学生所选劳动课全不相同的方法共有()A.135种B.720种C.1080种D.1800种12.“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平行线,从上往下每条线上各数之和依次为1,1,2,3,5,8,13,,则下列选项不正确的是()A.在第9条斜线上,各数之和为55B.在第条斜线上,各数自左往右先增大后减小C.在第条斜线上,共有个数D.在第11条斜线上,最大的数是二、多选题13.若,下列结论正确的是()A.n=10B.n=11C.a=466D.a=23314.现有个男生个女生,若从中选取个学生,则()A.选取的个学生都是女生的不同选法共有种B.选取的个学生恰有个女生的不同选法共有种C.选取的个学生至少有个女生的不同选法共有种D.选取的个学生至多有个男生的不同选法共有种15.新高考按照“”的模式设置,其中“3”为全国统考科目语文、数学、外语,所有考生必考:“1”为首选科目,考生须在物理、历史两科中选择一科;“2”为再选科目,考生可结合自身特长兴趣在化学、生物、政治、地理四科中选择两科.下列说法正确的是()A.若任意选科,选法总数为B.若化学必选,选法总数为C.若政治和地理至多选一门,选法总数为D.若物理必选,化学、生物至少选一门,选法总数为16.某工程队有6辆不同的工程车,按下列方式分给工地进行作业,每个工地至少分1辆工程车,则下列结论正确的有()A.分给甲、乙、丙三地每地各2辆,有120种分配方式B.分给甲、乙两地每地各2辆,分给丙、丁两地每地各1辆,有180种分配方式C.分给甲、乙、丙三地,其中一地分4辆,另两地各分1辆,有60种分配方式D.分给甲、乙、丙、丁四地,其中两地各分2辆,另两地各分1辆,有1080种分配方式三、填空题17.设,则______.18.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有______种不同的安排方法.19.近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A,B角色各1人,C角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A,B角色不可同时为女生.则店主共有__________种选择方式.20.我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为的个球的口袋中取出个球,共有种取法中,不取号球有种取法;取号球有.试运用此方法,写出如下等式的结果:___________.四、解答题21.计算:(1);(2);(3);(4);(5).22.空间有10个点,其中任意4点不共面.(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?23.某校准备参加高中数学联赛,把16个选手名额分配到高三年级的1~4班,每班至少一个名额.(1)不同的分配方案共有多少种?(2)若每班名额不少于该班的序号数,则不同的分配方案共有多少种?24.现有10名教师,其中6名男教师,4名女教师.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?25.学校组织甲、乙、丙、丁4名同学去A,B,C,3个工厂进行社会实践活动,每名同学只能去1个工厂.(1)问有多少种不同的分配方案?(2)若每个工厂都有同学去,问有多少种不同的分配方案?(3)若同学甲、乙不能去工厂A,且每个工厂都有同学去,问有多少种不同的分配方案?(结果全部用数字作答)26.某班级甲组有5名男生,3名女生;乙组有6名男生,2名女生.(1)若从甲、乙两组中各选1人担任组长,则有多少种不同的的选法?(2)若从甲、乙两组中各选1人担任正副班长,则有多少种不同的的选法?(3)若从甲、乙两组中各选2人参加核酸检测,则选出的4人中恰有1名男生的不同选法共有多少种?27.求证:.28.将四个小球放入编号为1、2、3、4的四个盒子中,根据下列条件求不同放法的种数.(1)四个小球不同,每个盒子各放一个;(2)四个小球相同,每个盒子各放一个;(3)四个小球不同,四个盒子恰有一个空着;(4)四个小球相同,四个盒子恰有一个空着.29.设集合,其中,,在M的所有元素个数为K(,2≤K≤n)的子集中,我们把每个K元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论