郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题【含解析】_第1页
郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题【含解析】_第2页
郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题【含解析】_第3页
郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题【含解析】_第4页
郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题【含解析】_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

郑州市外国语中学2023年数学八年级第一学期期末统考模拟试题题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为,则()A.12 B.16 C.20 D.242.在平面直角坐标系中,已知点A(2,m)和点B(n,-3)关于y轴对称,则的值是()A.-1 B.1 C.5 D.-53.如果把分式中的x,y都乘以3,那么分式的值k()A.变成3k B.不变 C.变成 D.变成9k4.已知:如图,四边形中,,.在边上求作点,则的最小值为()A. B. C. D.5.将直线y=-2x向上平移后得到直线AB,直线AB经过点(1,4),则直线AB的函数表达式为()A.y=2x+2 B.y=2x-6 C.y=-2x+3 D.y=-2x+66.如图所示,将三角尺的直角顶点放在直尺的一边上,,,则等于()A. B. C. D.7.A,B两地相距20,甲乙两人沿同一条路线从地到地,如图反映的是二人行进路程()与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有()A.1个 B.2个 C.3个 D.4个8.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6 B.2、3、4 C.5、7、12 D.8、15、179.已知(m-n)2=38,(m+n)2=4000,则m2+n2的值为()A.2017 B.2018 C.2019 D.403810.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C. D.11.如果把分式中的x与y都扩大2倍,那么这个分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.扩大6倍12.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.2、6、3 C.8、6、3 D.11、4、6二、填空题(每题4分,共24分)13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.14.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠AEB的度数是.17.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)

12

10

8

合计/kg

小菲购买的数量/kg

2

2

2

6

小琳购买的数量/kg

1

2

3

6

从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较18.某学校八年级班学生准备在植树节义务植树棵,原计划每小时植树棵,实际每小时植树的棵数是原计划的倍,那么实际比原计划提前了__________小时完成任务.(用含的代数式表示).三、解答题(共78分)19.(8分)中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?20.(8分)如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.22.(10分)化简(1)(2)23.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.24.(10分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.25.(12分)已知:如图在四边形ABCD中,AB∥CD,AD∥BC,延长CD至点E,连接AE,若,求证:26.已知:如图,中,∠ABC=45°,于D,BE平分∠ABC,且于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由

参考答案一、选择题(每题4分,共48分)1、D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.2、D【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后代入代数式进行计算即可得解.【详解】解:∵A(2,m)和B(n,-3)关于y轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【分析】x,y都乘以3,再化简得=.【详解】==k.所以,分式的值不变.故选B【点睛】本题考核知识点:分式的性质.解题关键点:熟记分式基本性质.4、B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=3,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=10°,∴∠D'CE=30°,∴D'C=2D'E=2AB=2×3=1,∴PC+PD的最小值为1.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.5、D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.6、A【分析】先根据平行线的性质得到,然后根据三角形外角的性质有,最后利用即可求解.【详解】如图∵,.,∴.故选:A.【点睛】本题主要考查平行线的性质及三角形外角的性质,掌握平行线的性质及三角形外角的性质是解题的关键.7、A【分析】根据题意结合图象依次判断即可.【详解】①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.【点睛】此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.8、D【详解】解:A、22+42≠62,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;B、22+32≠42,根据勾股定理的逆定理可知三角形不是直角三角形,故错误.C、52+72≠122,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;D、82+152=172,根据勾股定理的逆定理可知三角形是直角三角形,故正确.故选D.考点:勾股数.9、C【分析】根据完全平方公式的变形,即可解答.【详解】(m−n)2=38,m2−2mn+n2=38①,(m+n)2=4000,m2+2mn+n2=4000②,①+②得:2m2+2n2=4038,m2+n2=1.故选:C.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.10、C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【详解】解:如图,连接AD,则AD=AB=3,

由勾股定理可得,Rt△ADE中,DE=,

又∵CE=3,

∴CD=3-,

故选:C.【点睛】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.11、B【分析】根据分式的分子分母都乘以或处以同一个不为零的数,分式的值不变,可得答案.【详解】分式中的x与y都扩大2倍,得,

故选:B.【点睛】此题考查分式的基本性质,解题关键在于掌握分式的分子分母都乘以或处以同一个不为零的数,分式的值不变.12、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题(每题4分,共24分)13、105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14、1【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方,求出斜边的长,进而可求出旗杆折断之前的长度.【详解】由题意知折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=15米,所以旗杆折断之前大致有15+9=1米,故答案为1.【点睛】本题考查的是勾股定理的应用,找出可以运用勾股定理的直角三角形是关键.15、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16、70°【解析】试题分析:由折叠的性质可求得∠EFC=∠EFC′=125°,由平行线的性质可求得∠DEF=∠BEF=55°,从而可求得∠AEB的度数.解:由折叠的性质可得∠EFC=∠EFC′=125°,∠DEF=∠BEF,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠DEF=∠BEF=180°﹣∠EFC=180°﹣125°=55°,∴∠AEB=180°﹣∠DEF﹣∠BEF=180°﹣55°﹣55°=70°,故答案为70°.17、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.18、【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要小时,实际需要小时,

故提前的时间为,

则实际比原计划提前了小时完成任务.故答案为:.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.三、解答题(共78分)19、【解析】试题分析:过点B作BCAD于C,可以计算出AC、BC的长度,在直角△ABC中根据勾股定理即可计算AB.试题解析:过点B作BCAD于C,所以AC=3﹣2+4.5=2.5m,BC=3.5+4.5=6m,在直角△ABC中,AB为斜边,则m,答:机器人从点A到点B之间的距离是m.考点:勾股定理.20、∠D=45°;∠AED=70°;∠BFE=115°.【解析】根据直角三角形两锐角互余列式求解即可得到∠D,根据在同一平面内垂直于同一直线的两直线互相平行可得AB∥CD,再根据两直线平行,内错角相等可得∠AED=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFE=∠D+∠AED.【详解】∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;∵AB⊥BC,DC⊥BC,∴AB∥DC,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.【点睛】本题考查了三角形的内角和定理,三角形外角的性质,熟记定理与性质并准确识图是解题的关键.21、(1)详见解析;(2)(m,2﹣n);(3)详见解析.【分析】(1)分别作出△ABC的三个顶点关于直线l的对称点,再首尾顺次连接即可;(2)由题意得:两点的横坐标相等,对称点P1的纵坐标为1﹣(n﹣1),从而得出答案;(3)利用轴对称的性质求解可得.【详解】(1)如图所示,△A1B1C1即为所求;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.【点睛】本题主要考查直角坐标系中,图形的轴对称以及轴对称的性质,掌握轴对称的性质是解题的关键.22、(1);(2)【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式括号中两项通分后利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式;(2)原式.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23、(1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.【分析】(1)由“SAS”可证△ACD≌△ABE,可得BE=CD;(2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.【详解】解:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,且AB=AC,AD=AE,∴△ACD≌△ABE(SAS)∴BE=CD;(2)如图2,①∵∠BAC=∠EAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.24、(1)见解析;(2)4.【分析】(1)根据CE⊥CD,∠ACB=90°得∠BCD=∠ACE,再根据AC=BC,CE=CD,即可证明△CBD≌△CAE(SAS);(2)通过△C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论