2.12.2用样本的数字特征估计总体的数字特征公开课一等奖课件省赛课获奖课件_第1页
2.12.2用样本的数字特征估计总体的数字特征公开课一等奖课件省赛课获奖课件_第2页
2.12.2用样本的数字特征估计总体的数字特征公开课一等奖课件省赛课获奖课件_第3页
2.12.2用样本的数字特征估计总体的数字特征公开课一等奖课件省赛课获奖课件_第4页
2.12.2用样本的数字特征估计总体的数字特征公开课一等奖课件省赛课获奖课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(一)众数、中位数、平均数2.2.2用样本的数字特性预计总体的数字特性一众数、中位数、平均数的概念中位数:将一组数据按大小依次排列,把处在最中间位置的一种数据(或最中间两个数据的平均数)叫做这组数据的中位数.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.

平均数:一组数据的算术平均数,即

甲在一次射击比赛中的得分以下:(单位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均数是_____,中位数是众数是_____2.某次数学试卷得分抽样中得到:90分的有3个人,80分的有10人,70分的有5人,60分的有2人,则这次抽样的平均分为______.7.177分练习75,6,7,8问题1:众数、中位数、平均数这三个数普通都会来自于同一种总体或样本,它们能表明总体或样本的什么性质?平均数:反映全部数据的平均水平众数:反映的往往是局部较集中的数据信息

中位数:是位置型数,反映处在中间部位的数据信息二、众数、中位数、平均数与频率分布直方图的关系频率组距0.10.20.30.40.5O0.511.522.533.544.5月平均用水量(t)

众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。如何在频率分布直方图中预计众数可将众数看作直方图中面积最大长方形的“中心”0.52.521.5143.534.5频率组距0.040.080.150.220.250.140.060.040.02前四个小矩形的面积和=0.49后四个小矩形的面积和=0.262.02如何在频率分布直方图中预计中位数分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]合计频率0.040.080.150.220.250.140.060.040.021在样本中中位数的左右各有50%的样本数,条形面积各为0.5,因此反映在直方图中位数左右的面积相等.,中位数)可将中位数看作整个直方图面积的“中心”思考讨论下列问题:1、2.02这个中位数的预计值,与样本的中位数值2.0不同,你能解释其中因素吗?答:2.02这个中位数的预计值,与样本的中位数值2.0不同,这是由于样本数据的频率分布直方图,只是直观地表明分布的形状,但是从直方图本身得不出原始的数据内容,直方图已经损失某些样本信息。因此由频率分布直方图得到的中位数预计值往往与样本的实际中位数值不一致.如何在频率分布直方图中预计平均数=2.02=2.02平均数的预计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。可将平均数看作整个直方图面积的“重心”

例1:从甲、乙、丙三个厂家的同一种产品抽取8件,对其使用寿命进行追踪调查,成果以下:甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家广告中均称该产品的使用寿命为8年,请根据成果判断厂家在广告中分别运用了那些特性数?若不考虑其它因素,你会选择哪个厂家的产品,说出理由。思考讨论下列问题:2、样本中位数不受少数极端值的影响,这在某些状况下是一种优点,但它对极端值的不敏感有时也会成为缺点。你能举例阐明吗?答:优点:对极端数据不敏感的办法能够有效地防止错误数据的影响。对极端值不敏感有利的例子:例如当样本数据质量比较差,即存在某些错误数据(如数据录入错误、测量错误等)时,用抗极端数据强的中位数表达数据的中心值更精确。缺点:(1)出现错误的数据也不懂得;(2)对极端值不敏感有弊的例子:某人含有初级计算机专业技术水平,想找一份收入好的工作。这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其因素是中位数对极小的数据不敏感。这里更加好的办法是同时用平均工资和中位数作为参考指标,选择平均工资较高且中位数较大的公司就业.例1某工厂人员及工资构成以下:人员经理管理人员高级技工工人学徒合计周工资2200250220200100人数16510123合计22001500110020001006900(1)指出这个问题中周工资的众数、中位数、平均数(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?分析:众数为200,中位数为220,平均数为300。因平均数为300,由表格中所列出的数据可见,只有经理在平均数以上,其它的人都在平均数下列,故用平均数不能客观真实地反映该工厂的工资水平。三、众数、中位数、平均数的简朴应用例2、下表是七位评委给某参赛选手的打分,总分为10分,你认为如何计算这位选手的最后得分才较为合理?评委1号2号3号4号5号6号7号打分9.69.39.39.69.99.39.4提问:1、电视里评委是如何给选手打分的?2、为什么这样做?直接取中位数和众数的值不好么?特征数

众数中位数平均数去掉一个最高分和最低分后的平均分去掉两个最高分和最低分后的平均分特征值

9.39.49.499.429.44课堂练习:1、假设你是一名交通部门的工作人员。你打算向市长报告国家对我市26条公路项目投资的平均资金数额,其中一条新公路的建设投资为2200万元人民币,另外25个项目的投资在20万与100万.中位数是25万,平均数是100万,众数是20万元。你会选择哪一种数字特性来表达每一种项目的国家投资?你选择这种数字特性的缺点是什么?选择平均数更加好:由于,此时的众数20万比中位数25万还小,因此众数代表的是局部的数。中位数代表的即使是大多数公路投资的数额,但由于其不受极端值的影响,不能代表全体,因而此时成了它的缺点。选择平均数较好,能比较好的代表整体水平,但缺点是仍不能显示出具体的数字特性方差与原则差(二)情境一;甲.乙两名射击队员,在进行的十次射击中成绩分别是:甲:10;9;8;10;8;8;10;10;9.5;7.5乙:9;9;8,5;9;9;9.5;9.5;8.5;8.5;9.5试问二人谁发挥的水平较稳定?分析:甲的平均成绩是9环.乙的平均成绩也是9环.一.实例引入情境二:某农场种植了甲、乙两种玉米苗,从中各抽取了10株,分别测得它们的株高以下:(单位cm)

甲:31323537333032313029

乙:53165413661613111662问:哪种玉米苗长得高?哪种玉米苗长得齐?怎么办呢?甲37(最大值)29(最小值)8乙66(最大值)11(最小值)55极差

甲:31323537333032313029

乙:53165413661613111662甲32372937321166乙极差:一组数据的最大值与最小值的差极差越大,数据越分散,越不稳定极差越小,数据越集中,越稳定极差体现了数据的离散程度离散程度为了对两人射击水平的稳定程度,玉米生长的高度差别以及钢筋质量优劣做个合理的评价,这里我们引入了一种新的概念:方差和原则差.设一组样本数据,其平均数为,则称s2为这个样本的方差,称为这个样本的原则差,分别称为样本方差、样本原则差它的算术平方根x1,x2,…,xn样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本原则差。样本方差和样本原则差都是衡量一种样本波动大小的量,样本方差或样本原则差越大,样本数据的波动就越大。例1.计算数据89,93,88,91,94,90,88,87的方差和原则差。(原则差成果精确到0.1)解:.

因此这组数据的方差为5.5,原则差为2.3.见课本76-77页练习:若甲、乙两队比赛状况以下,下列说法哪些说法是不对的的:甲乙平均失球数平均失球个数的标准差1.52.11.10.41、平均来说,甲的技术比乙的技术好;2、乙比甲技术更稳定;3、甲队有时体现差,有时体现好;4、乙队极少不失球。全对例2:甲、乙两种水稻实验品种持续5年的平均单位面积产量以下(单位:t/hm),试根据这组数据预计哪一种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论