版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省清远市清城区2025年高三4月质量调研(二模)数学试题理试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要2.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.43.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.4.已知,则()A. B. C. D.5.已知是等差数列的前项和,,,则()A.85 B. C.35 D.6.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.7.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.8.若,,则的值为()A. B. C. D.9.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.10.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.18011.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且,若,则______________.14.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.15.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.16.(5分)已知椭圆方程为,过其下焦点作斜率存在的直线与椭圆交于两点,为坐标原点,则面积的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.18.(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,,求的面积.19.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.20.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.21.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.(1)求证:;(2)求平面与平面所成二面角的正弦值.22.(10分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.2.C【解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.3.C【解析】
由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.本题考查复数的几何表示和共轭复数的定义,属于基础题.4.C【解析】
利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.5.B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.6.D【解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.7.D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.8.A【解析】
取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.本题考查了二项式定理的应用,取和是解题的关键.9.A【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.10.A【解析】
因为,可得,根据等差数列前项和,即可求得答案.【详解】,,.故选:A.本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.11.B【解析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.12.C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.9【解析】
用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.【详解】由,得,两式相减,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.14.【解析】
由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【详解】解:,,又,则.,,,即解得,即.故答案为:.本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.15.丙【解析】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.16.【解析】
由题意,,则,得.由题意可设的方程为,,联立方程组,消去得,恒成立,,,则,点到直线的距离为,则,又,则,当且仅当即时取等号.故面积的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)存在,为中点【解析】
(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.利用向量方法得,解得,所以为中点.【详解】(1)由于为中点,.又,故,所以为直角三角形且,即.又因为面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四边形为矩形,则两两垂直.以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点.本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.18.(1);(2)【解析】
(1)由已知条件和正弦定理进行边角互化得,再根据余弦定理可求得值.(2)由正弦定理得,,代入得,运用三角形的面积公式可求得其值.【详解】(1)由及正弦定理得,即由余弦定理得,,.(2)设外接圆的半径为,则由正弦定理得,,,.本题考查运用三角形的正弦定理、余弦定理、三角形的面积公式,关键在于熟练地运用其公式,合理地选择进行边角互化,属于基础题.19.(1);(2)极小值;(3)函数的零点个数为.【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.20.(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.21.见解析【解析】
(1)如图,连接,交于点,连接,,则为的中点,因为为的中点,所以,又,所以,从而,,,四点共面.因为平面,平面,平面平面,所以.又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分别以,,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,,所以,,,,所以,,.设平面的法向量为,则,即,令,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年陇南货运资格证考试答案
- 2025年鹰潭道路运输从业人员资格考试内容有哪些
- 企业资源整合协作框架协议书
- 高中生人工智能科普故事征文
- 文化创意产业数字化内容制作与推广策略方案
- 健康管理平台健康数据监测与分析服务升级计划
- 知识产权保护与合规经营策略指南
- 装载机电子秤采购合同
- 财务风险预防与应对策略
- 新零售数字化门店管理与供应链整合方案
- X市科协领导班子2021年工作总结
- 2024年新人教版七年级上册地理课件 第二章 地图 第二节 地形图的判读
- 2024至2030年中国汽摩配行业发展状况及竞争格局分析报告
- 潍柴天然气发动机结构及工作原理
- 国家开放大学《理工英语2》形考任务1-8参考答案
- 建筑公司证书津贴支付管理办法
- 2024年电大劳动与社会保障法期末考试题库及答案
- 经桡动脉全脑血管造影术围手术期护理
- 人教版九年级数学上册21.1《一元二次方程》教学设计
- 从古至今话廉洁-大学生廉洁素养教育智慧树知到期末考试答案章节答案2024年吉林大学
- 高中英语外刊-小猫钓鱼50篇
评论
0/150
提交评论