2024北京二中初三(下)阶段检测二数学试卷和答案_第1页
2024北京二中初三(下)阶段检测二数学试卷和答案_第2页
2024北京二中初三(下)阶段检测二数学试卷和答案_第3页
2024北京二中初三(下)阶段检测二数学试卷和答案_第4页
2024北京二中初三(下)阶段检测二数学试卷和答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中PAGE1初中2024北京二中初三(下)阶段检测二数学2024.3.13一、选择题(共16分,每题3分,以下每题只有一个正确的选项)1.截至2021年4月10日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗16447.1万剂次,将16447.1万用科学记数法表示为()A. B. C. D.2.不透明的袋子中装有3个红球,2个黑球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.若点都在双曲线上,则的大小关系是()A. B. C. D.5.在数轴上,点A,B分别表示数a,3,点A关于原点O的对称点为点C.如果C为AB的中点,那么a的值为()A.﹣3 B.﹣1 C.1 D.36.如图,在中,,,,,则()A. B.10 C.12 D.167.如图,在中,,将绕点A逆时针旋转至,且,B,三点共线.若,则()A. B. C. D.8.如果一个圆的内接三角形有一边的长度等于半径,那么称其为该圆的“半径三角形”.给出下面四个结论:①一个圆的“半径三角形”有无数个;②一个圆的“半径三角形”可能是锐角三角形、直角三角形或钝角三角形;③当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是或;④若一个圆的半径为4,则它的“半径三角形”面积最小值为上述结论中,所有正确结论的序号是()A.①② B.②③ C.①②③ D.①②④二、填空题(共16分,每题2分)9.使有意义的x的取值范围是_______.10.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为_____.11.分解因式:_________.12.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是千米,在相同的路线上,小红驾车的速度是骑自行车速度的倍,小红每天骑自行车上班比驾车上班要早出发分钟,才能按原时间到达单位.设小红骑自行车的速度为每小时千米,依题意,可列方程为______13.如图,已知点A在反比例函数的图象上,轴于点C,点B在x轴的负半轴上,若,则k的值为_________.14.如图,是半圆O的直径,将半圆O绕点A逆时针旋转,点B的对应点为,连接,若,则图中阴影部分的面积是_______.15.如图,是的外接圆,,,则的值为______.16.小亮有黑、白各10张卡片,分别写有数字0~9.把它们像扑克牌那样洗过后,数字朝下,排成四行,排列规则如下:①从左至右按从小到大的顺序排列:②黑、白卡片数字相同时,黑卡片放在左边.小亮每行翻开了两张卡片,如图所示:其余卡片上数字小亮让小明根据排列规则进行推算,小明发现有的卡片上数字可以唯一确定,例如第四行最后一张白色卡片上数字只能是______有的卡片上的数字并不能唯一确定,小明对不能唯一确定的卡片上数字进行猜测,则小明一次猜对所有数字的概率是______.三、解答题(共60分,每题6分)17.计算:.18.解不等式组:,并写出它的所有非负整数解.19.已知关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)若方程的两个根都是有理数,请选择一个合适的非零实数m,并求出此方程的根.20.当时,,20.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙O及⊙O上一点P.求作:过点P的⊙O的切线.作法:如图,作射线OP;①在直线OP外任取一点A,以A为圆心,AP为半径作⊙A,与射线OP交于另一点B;②连接并延长BA与⊙A交于点C;③作直线PC;则直线PC即为所求.根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵BC是⊙A的直径,∴∠BPC=90°(填推理依据).∴OP⊥PC.又∵OP是⊙O的半径,∴PC是⊙O的切线(填推理依据).21.如图,在中,,D是的中点,点E,F在射线上,且.(1)求证:四边形是菱形;(2)若,,求菱形的面积.22.如图,已知锐角,以为直径画,交于点M,平分与交于点D,过点D作于点E.(1)求证:是的切线;(2)连接交于点F,若,,求长.23.北京市共青团团委为弘扬“奉献、友爱、互助、进步”的志愿精神,鼓励学生积极参加志愿活动,为了解九年级未入团学生参加志愿活动的情况,从A、B两所学校九年级未入团学生中,各随机抽取20名学生,在“志愿北京”上查到了他们参加志愿活动的时长,部分数据如下:a.两校志愿活动时长(小时)如下:A校:17393923528264839194671713482732333244B校:3021314225182635302812403029334639163327b.两校志愿活动时长频数分布直方图(数据分成5组:,,,,):c.两校志愿活动时长的平均数、众数、中位数如下:学校平均数众数中位数A校29.55m32B校29.5530n根据以上信息,回答下列问题:(1)补全A校志愿活动时长频数分布直方图;(2)直接写出表中m,n的值;(3)根据北京市共青团团委要求,“志愿北京APP”上参加志愿活动时长不够20小时不能提出入团申请,若B校九年级未入团学生有180人,从志愿活动时长的角度看,估计B校有资格提出入团申请的人数.24.在第19届杭州亚运会中,中国女篮在最后时刻以74比72险胜日本成功卫冕亚运会冠军.如图1,球场上,一名1.85米的运动员,当跳离地面的高度0.25米时,球在头顶上方0.15米处出手,然后准确落入篮框.已知篮框中心到地面的距离为3.05米,当球与篮框的水平距离为1.5米时,达到最大高度3.5米.(1)篮球出手处距离地面的高度是米;(2)运动员投篮时站在三分线内还是三分线外,并说明理由(图2为篮球场平面示意图,三分线与篮框的水平距离是6.75米).25.在平面直角坐标系中,已知点在抛物线上.(1)①抛物线的对称轴为直线;②当时,抛物线在x轴下方,当时,抛物线在x轴上方,求此时抛物线的表达式;(2)若抛物线上存在点其中,,满足且,使得求a的取值范围.

参考答案一、选择题(共16分,每题3分,以下每题只有一个正确的选项)1.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:16447.1万=故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】B【分析】本题考查简单事件的概率,根据概率公式求解,即可解题.【详解】解:摸出红球的概率为,故选:B.3.【答案】A【分析】直接利用合并同类项法则、分式的运算法则、二次根式的运算法则分别计算各项后即可解答.【详解】选项A、2a+3a=5a,故此选项正确;选项B、和不是同类项,不能合并,故此选项错误;选项C、,故此选项错误;选项D、与不是同类二次根式,不能合并,故此选项错误.故选A.【点睛】本题考查了合并同类项法则、分式的运算法则、二次根式的运算法则,熟练运用法则进行计算是解决问题的关键.4.【答案】D【分析】本题考查了反比例函数图像的性质,解题的关键是熟知双曲线的增减性.根据双曲线所在象限为第四象限与第二象限可知最小,对于在第二象限的与来说,因为y随x的增大而增大,所以有.【详解】解:点,,在双曲线上,,分布在第二象限,在第四象限,每个象限内,y随x的增大而增大,且第四象限的最小,故选:D.5.【答案】B【分析】根据题意得点C表示的数为﹣a,根据C为AB的中点,列出关于a的绝对值方程,按照绝对值的化简法则计算,得出a的值并进行取舍即可.【详解】解:∵点A,B分别表示数a,3,点A关于原点O的对称点为点C.∴点C表示的数为﹣a,∵C为AB的中点,∴|a﹣(﹣a)|=|3+a|,∴2a=3+a,或﹣2a=3+a,∴a=3(舍去,因为此时点A与点B重合,则点C为AB中点,但又要与点A关于原点称,矛盾),或a=﹣1.故选:B.【点睛】本题考查了用数轴上点表示有理数,正确理解并列式是解题的关键.6.【答案】D【分析】本题考查相似三角形的性质和判定,根据题意证明,再利用相似三角形性质求解,即可解题.【详解】解:,,,,,,,,解得,故选:D.7.【答案】C【分析】本题考查了旋转的性质,以及等边对等角的性质及三角形的内角和、外角定理,平角定义等,熟练运用这些知识是正确解题的关键.根据旋转的性质可以得到对应边,对应角,旋转角,根据三角形的内角和及外角定理可求得旋转角进而即可求出.【详解】解:由旋转可得:,,,,,,,,,.故选:C.8.【答案】C【分析】根据圆的“半径三角形”的概念判断①②;根据圆周角定理、等腰三角形的概念判断③;根据垂径定理求出,根据勾股定理求出,求出的最大面积,判断④.【详解】如图,,即的长度等于半径,∵,即的长度等于半径,以为边的圆的内接三角形有无数个,故①结论正确;为等边三角形,,当点在优弧上时,,当点在劣弧上时,,当点在圆上移动时,可能是,一个圆的“半径三角形”可能是锐角三角形,直角三角形或钝角三角形,故②正确;由以上可知,可以是或,当,时,,当一个圆的“半径三角形”为等腰三角形时,它的顶角可能是,或,故③错误;过作于,,,当点为优弧的中点时,的面积最大,没有最小值,最大值为:,故④错误;故选:C.【点睛】本题主要考查了三角形的外接圆,圆周角定理,勾股定理,等腰三角形的性质,灵活运用分情况讨论思想是解本题的关键.二、填空题(共16分,每题2分)9.【答案】【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】解:根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1.故答案为x≥﹣1.【点睛】本题考查了二次根式有意义的条件,比较简单.10.【答案】3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式===3(m+n),

当m+n=1时,原式=3,

故答案为:3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.11.【答案】【分析】首先提取公因式2,再根据完全平行方公式即可分解因式.【详解】解:,故答案为:.【点睛】本题考查了利用提公因式法和完全平方公式分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.12.【答案】【分析】设小红骑自行车的速度是每小时x千米,则驾车的速度是每小时4x千米,依据“小红每天骑自行车上班比驾车上班要早出发45分钟”列出方程.【详解】解:设小红骑自行车的速度是每小时千米,则驾车的速度是每小时千米,根据题意得:,故答案是:.【点睛】本题考查由实际问题抽象出分式方程,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.13.【答案】-4【分析】连结OA,由AC⊥y轴,可得AC∥x轴,可知S△ACB=S△ACO=2,可得,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA,∵AC⊥y轴,∴AC∥x轴,∴S△ACB=S△ACO=2,∴,∴,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k的几何意义.14.【答案】【分析】本题记与半圆O交于点,连接,作于点,根据旋转的性质得到,图中阴影部分的面积,利用30度所对直角边等于斜边一半算出,利用勾股定理算出,利用垂径定理得到,算出,再根据圆周角定理和扇形面积公式算出,即可解题.【详解】解:记与半圆O交于点,连接,作于点,由旋转的性质可知,两个半圆面积相等,,图中阴影部分的面积,若,,,,,,,,,图中阴影部分的面积是,故答案为:.【点睛】本题考查了30度所对直角边等于斜边一半、勾股定理、垂径定理、圆周角定理和扇形面积公式,熟练掌握相关性质定理并灵活运用,即可解题.15.【答案】【分析】连接OC,过点O作OD⊥BC于D,由等腰三角形的性质,得∠BOD=∠BOC,BD=BC=×4=2,在Rt△OBD中,由勾股定理,求得OD=3,由圆周角定理可得∠A=∠BOC,则∠BOD=∠A,所以tanA=tan∠BOD=.【详解】解:连接OC,过点O作OD⊥BC于D,∵OB=OC,OD⊥BC,∴∠BOD=∠BOC,BD=BC=×4=2,在Rt△OBD中,由勾股定理,得OD==3,∵∠A=∠BOC,∴∠BOD=∠A,∴tanA=tan∠BOD=,故答案为:.【点睛】本师考查等腰三角形的性质,勾股定理,圆周角定理,正切三角函数定义,作辅助线:过点O作OD⊥BC于D,构造直角三角形是解题的关键.16.【答案】①.②.【分析】本题考查概率问题,图形类规律探索,根据规则确定数值,然后根据不能确定的数字进行求概率即可.【详解】解:∵黑卡在左边,∴白卡数字可能为或,又∵白卡排在第一行,∴第四行最后一张白色卡片上数字只能是,每行能确定的数字为:第一行:15679第二行:12345第三行:0679第四行:0288不能确定的是黑色3和4,共有两种填法,是等可能性的,填对的有一种,即概率为.三、解答题(共60分,每题6分)17.【答案】【分析】首先计算负整数指数幂,绝对值,零指数幂和特殊角的三角函数值,然后计算加减即可.【详解】.【点睛】此题考查了负整数指数幂,绝对值,零指数幂和特殊角的三角函数值,解题的关键是熟练掌握以上运算法则.18.【答案】不等式组的所有非负整数解为:0,1,2,3.【分析】先解不等式组求出x的取值范围,然后找出符合范围的非负整数解.【详解】解:由不等式①得:x≥-2,由不等式②得:,,∴不等式组的解集为:,∴x的非负整数解为:0,1,2,3.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答案】(1)且;(2)当时,,【分析】本题考查了一元二次方程的判别式,解一元二次方程,熟练掌握运用根的判别式是解题的关键.(1)根据根的判别式进行求解即可;(2)因为方程的两个根都是有理数.所以根的判别式为有理数,且不为零,可当时,然后代入解方程即可.【小问1详解】由题意可得,,解得,又,∴,∴的取值范围:且;【小问2详解】∵方程的两个根都是有理数,∴为有理数且不为0,即为有理数且不为0,∴当时,原方程化为,∴∴或解得,.20.【答案】(1)见解析;(2)直径所对的圆周角是直角;过半径外端并且垂直于这条半径的直线是圆的切线【分析】(1)根据题意作出图形即可;(2)根据圆周角定理得到∠BPC=90°,根据切线的判定定理即可得到结论.【详解】解:(1)补全图形如图所示,则直线PC即为所求;(2)证明:∵BC是⊙A的直径,∴∠BPC=90°(圆周角定理),∴OP⊥PC.又∵OP是⊙O的半径,∴PC是⊙O的切线(切线的判定).故答案为:圆周角定理;切线的判定.【点睛】本题考查了切线的判定,圆周角定理,正确的作出图形是解题的关键.21.【答案】(1)见解析(2)【分析】(1)先由等腰三角形“三线合一”的性质得到,,再结合“对角线相互垂直的平行四边形是菱形”即可证明结论;(2)设,根据题意,表示出,,再根据勾股定理列出方程求解,最后计算菱形的面积即可.【小问1详解】证明:∵,D是的中点,∴,,∵,∴四边形是菱形;【小问2详解】解:设,∵,,,∴,,,,在中,,即,解得,∴,则,∴菱形的面积.【点睛】本题考查了等腰三角形的性质、菱形的判定定理和性质定理,勾股定理,菱形的面积,熟练掌握知识点是解题的关键.22.【答案】(1)见解析(2)【分析】(1)连接,根据可得,根据角平分线的定义,则,最后根据,,即可证明;(2)连接,,可得,即可求出的长度,根据勾股定理求出的长度,进而求出的长度,通过证明,即可根据相似三角形对应边成比例求解.【小问1详解】证明:连接,∵,∴,∵平分,∴,∴,∵,∴,∴,∴是的切线;【小问2详解】如图:连接,,∵为直径,,∴,∵,平分,∴,∴,在中,根据勾股定理可得,∴,在中,根据勾股定理可得,∵,,∴,∴,,∴,∴,即,解得:.【点睛】本题主要考查了切线的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,角平分线的定义,解题的关键是熟练掌握相关内容并灵活运用.23.【答案】(1)见解析(2),(3)153人【分析】(1)求出A校中和的学生人数,然后补全频数分布直方图即可;(2)根据中位数和众数的定义进行解答即可;(3)用乘以B校时长大于等于20小时的学生百分比,即可求出结果.【小问1详解】解:A校中的学生人数为4人,的学生人数为7人,则补全A校志愿活动时长频数分布直方图如下:【小问2详解】解:A校中活动时长出现次数最多的是39小时,因此;将B校学生的活动时长从小到大进行排序,排在第10和第11的都是30小时,因此中位数.【小问3详解】解:(人),答:B校有资格提出入团申请的人数为153人.【点睛】本题主要考查了频数分步直方图,求中位数,众数,解题的关键是理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论