版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市重点中学2023-2024学年中考试题猜想数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°3.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米4.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.85.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,76.下列运算正确的是()A. B.C. D.7.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°8.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1079.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和910.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90° B.60° C.45° D.30°二、填空题(本大题共6个小题,每小题3分,共18分)11.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.12.函数y=的自变量x的取值范围为____________.13.计算的结果为.14.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.15.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.16.分解因式2x2+4x+2=__________.三、解答题(共8题,共72分)17.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.18.(8分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.19.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面积.20.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?21.(8分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(12分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.24.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______件,每件盈利______元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.2、A【解析】
如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.3、D【解析】解:0.5纳米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故选D.点睛:在负指数科学计数法中,其中,n等于第一个非0数字前所有0的个数(包括下数点前面的0).4、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.5、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.6、D【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.7、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.8、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.9、C【解析】
如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.10、B【解析】
首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得,解得,,则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.12、x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.13、【解析】
直接把分子相加减即可.【详解】=,故答案为:.【点睛】本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.14、4【解析】
根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.【详解】∵二次函数的对称轴为直线x=2,∴点A的坐标为(4,0),∵点C的坐标为(0,-2),∴点B的坐标为(4,-2),∴BC=4,则.【点睛】本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.15、【解析】
先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.16、2(x+1)2。【解析】试题解析:原式=2(x2+2x+1)=2(x+1)2.考点:提公因式法与公式法的综合运用.三、解答题(共8题,共72分)17、(1)OE=;(2)阴影部分的面积为【解析】
(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt△COE与Rt△AFE中,,∴△COE≌△AFE,∴阴影部分的面积=扇形FOC的面积,∵S扇形FOC==π.∴阴影部分的面积为π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.18、2【解析】试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.试题解析:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF=OD2-O则CD=2DF=215.考点:垂径定理;勾股定理.19、(1)证明详见解析;(2)证明详见解析;(3)1.【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.20、(1)该一次函数解析式为y=﹣110【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得150k+b=45b=60,解得:k=-∴该一次函数解析式为y=﹣110(2)当y=﹣110解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.21、6+.【解析】
利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)yB=-0.2x2+1.6x,(2)一次函数,yA=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.23、(1)证明见解析;(2)BC=,AD=.【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级第二学期语文教学计划集合十篇
- 白酒销售工作总结
- 高中生自我介绍(15篇)
- 体育教师科研报告总结
- 园林施工合同范本
- 社会实践报告(集合15篇)
- 关爱生命关注健康-健康知识讲座
- 关于环保的英语
- 关于天气的英语 weather
- 共青团员入团程序
- 2023年诸暨市高中提前招生考试数学试卷含答案
- 绘本 我爱幼儿园
- 信息传输原理智慧树知到答案章节测试2023年同济大学
- 高中数学-2.2.1 等差数列教学设计学情分析教材分析课后反思
- 农业经济学智慧树知到答案章节测试2023年华南农业大学
- 中国少数民族传统体育智慧树知到答案章节测试2023年云南体育运动职业技术学院
- GB/T 28827.3-2012信息技术服务运行维护第3部分:应急响应规范
- GB/T 26411-2010海水中16种多环芳烃的测定气相色谱-质谱法
- 8.2 重力势能 课件(共29张PPT)
- 低成本自动化的开展与案例课件
- 《项目进度管理研究文献综述》
评论
0/150
提交评论