版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市临潼区重点名校2021-2022学年中考三模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.2.如图,是的直径,是的弦,连接,,,则与的数量关系为()A. B.C. D.3.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2B.k-1C.kD.k+14.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.5.下列因式分解正确的是()A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)6.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣39.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.10.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100° B.105° C.110° D.115°二、填空题(共7小题,每小题3分,满分21分)11.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.12.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.13.a(a+b)﹣b(a+b)=_____.14.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.15.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.17.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.(5分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③20.(8分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.21.(10分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.22.(10分)如图所示,点P位于等边△ABC的内部,且∠ACP=∠CBP.(1)∠BPC的度数为________°;(2)延长BP至点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.23.(12分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,,,中,抛物线的关联点是_____;(2)如图2,在矩形ABCD中,点,点,①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.24.(14分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.2、C【解析】
首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】解:∵是的直径,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.3、A【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.4、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴,即,解得:EH=x,所以y=•x•x=x2,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.5、C【解析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!6、D【解析】
A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=,故选C.9、D【解析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.10、B【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.二、填空题(共7小题,每小题3分,满分21分)11、(1,﹣3)【解析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.12、5【解析】
作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.【详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC•DH=10,•2a•DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或−5(舍),故答案为5.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.13、(a+b)(a﹣b).【解析】
先确定公因式为(a+b),然后提取公因式后整理即可.【详解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.14、1.738×1【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.【点睛】本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.15、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,∴×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积.16、20【解析】
利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17、1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.三、解答题(共7小题,满分69分)18、(1)作图见解析(2)∠BDC=72°【解析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.19、(1)图②结论:AF=CD+CF.(2)图③结论:AF=CD+CF.【解析】试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;(2)延长交的延长线于点由全等三角形的对应边相等验证关系.试题解析:(1)图②结论:证明:作,的延长线交于点.∵四边形是矩形,由是中点,可证≌(2)图③结论:延长交的延长线于点如图所示因为四边形是平行四边形所以//且,因为为的中点,所以也是的中点,所以又因为所以又因为所以≌所以因为20、参见解析.【解析】分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.详解:证明:平行四边形中,,,.又,,,点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.21、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】
(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围.可由图象直接得到.(2)用b表示出OC和OF的长度,求出CF的长,进而求出sin∠OCB.(3)求直线AB的解析式关键是求出b的值.【详解】解:(1)如图:由图象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)设直线AB和y轴的交点为F.当y=0时,x=,即OC=﹣;当x=0时,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)过A作AD⊥x轴,过B作BE⊥x轴,则AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.22、(1)120°;(2)①作图见解析;②证明见解析;(3)3.【解析】【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;(2)①根据题意补全图形即可;②证明△ACD≌△BCP,根据全等三角形的对应边相等可得AD(3)如图2,作BM⊥AD于点M,BN⊥DC延长线于点N,根据已知可推导得出BM=【详解】(1)∵三角形ABC是等边三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案为120;(2)①∵如图1所示.②在等边△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度智能医疗系统研发与推广合同3篇
- 04版旅游咨询服务合同2篇
- 2024年度研发合同
- 2024年度医疗服务与健康合作合同
- 2024年度企业间借款保险理赔合同
- 2024年度移动办公设备租赁及服务合同
- 工程图学 课件 07零件图-2
- 2024年度美容师岗位胜任能力合同
- 2024年度产品代理合同的代理区域
- 2024年度加盟合同协议与加盟合同样本
- 2024年《论教育》全文课件
- 青年你为什么要入团-团员教育主题班会-热点主题班会课件
- QCSG1204009-2015电力监控系统安全防护技术规范
- 2024年度-《医疗事故处理条例》解读
- 非暴力沟通(完整版)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 高边坡支护脚手架搭设专项方案
- 高中英语教师个人专业发展计划精选3篇
- 焊接成本计算
- 关于国家自然科学基金项目变更依托单位的申请
- 普外科诊疗操作规范
评论
0/150
提交评论