版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽定陶县联考2022年中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.22.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④3.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109 B.3×108 C.30×108 D.0.3×10104.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:15.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.6.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.7.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50° B.60° C.70° D.80°8.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,309.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A. B. C. D.10.数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A.点A B.点B C.点C D.点D11.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A. B. C. D.12.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.14.化简:_____________.15.已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为______.16.一次函数y=kx+b的图像如图所示,则当kx+b>0时,x的取值范围为___________.17.写出一个一次函数,使它的图象经过第一、三、四象限:______.18.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).20.(6分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.21.(6分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.22.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.23.(8分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)24.(10分)计算:(π﹣3.14)0﹣2﹣|﹣3|.25.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?26.(12分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.27.(12分)先化简,再求值:(1+)÷,其中x=+1.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.2、B【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.3、A【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】将数据30亿用科学记数法表示为,故选A.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4、B【解析】
根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.【详解】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积==1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选B.【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.5、C【解析】
根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.6、D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图7、C【解析】
连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。【详解】连接BC.∵PA,PB是圆的切线∴在四边形中,∵∴∵所以∵是直径∴∴故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。8、C【解析】
根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.9、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10、A【解析】
根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】添加,根据AAS能证明≌,故A选项不符合题意.B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;C.添加,可得,根据AAS能证明≌,故C选项不符合题意;D.添加,可得,根据AAS能证明≌,故D选项不符合题意,故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12、B【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3cm.【解析】
根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.【详解】解:∵四边形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3cm,故答案为:3cm【点睛】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.14、【解析】
根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.15、y=【解析】解:设这个反比例函数的表达式为y=.∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=.故答案为y=.点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.16、x>1【解析】分析:题目要求kx+b>0,即一次函数的图像在x轴上方时,观察图象即可得x的取值范围.详解:∵kx+b>0,∴一次函数的图像在x轴上方时,∴x的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.17、y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).18、BE=DF【解析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m【解析】
如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC•tan60°=30m,∴乙建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度为(30﹣30)m.20、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10【解析】
分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)(2)如图,△B为所求,(1,0),△B的面积:6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,21、(1)见解析(2)【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=∴∴【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.22、(1)见解析(2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较大小即可.试题解析:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.试题解析:(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省部分省级示范高中2023-2024学年高二下学期期中数学试题2
- 湖南省桑植县贺龙中学高中语文选修《中国古代诗歌散文鉴赏》第二单元《梦游天姥吟留别》教案
- 专题09近代化的早期探索与民族危机的加剧
- 小学安全教育教案大全
- 4S店装修合同保密条款
- KA运营管理体系简述要点计划
- Protel99SE入门教程,图文并茂,不错
- 2023-2024学年全国小学四年级上数学仁爱版期中考试试卷(含答案解析)
- 2024年贷款居间服务合同范本1
- 2024年哈尔滨客运证考试题库
- 2024年公司与公司之间借款协议(多场合应用)
- 毕业论文写作指导A课件
- 讲课学前儿童注意的发展课件
- 规范网络行为课件
- 光伏星业务技能考试附有答案
- 工业机器人系统运维员(技师)资格认定备考题库(含答案)
- 《增强免疫力》课件
- 高中地理教学案例分析-以产业转移为例
- 天津市部分区2023-2024七年级上学期期末英语试卷及答案
- 《小儿手足口病》课件
- 常州高级中学2022-2023学年高一上学期期中英语试卷(原卷版)
评论
0/150
提交评论