湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题含解析_第1页
湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题含解析_第2页
湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题含解析_第3页
湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题含解析_第4页
湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市麓山国际实验学校2021-2022学年中考一模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在数轴上标注了四段范围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④2.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若,,则的度数是A. B. C. D.3.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为A. B. C. D.4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m5.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a6.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.57.对于任意实数k,关于x的方程的根的情况为A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定8.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.9.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40° B.45° C.50° D.60°10.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°11.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.米 B.米 C.米 D.米12.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变 B.中位数变大,方差不变C.中位数变小,方差变小 D.中位数不变,方差变小二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.14.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.15.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.16.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=.17.分解因式:=____18.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.20.(6分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?21.(6分)解分式方程:x+1x-1-22.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.填空:∠ABC=°,BC=;判断△ABC与△DEF是否相似,并证明你的结论.23.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.24.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.25.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.26.(12分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4000立方米所需时间与原来清雪3000立方米所需时间相同,求现在平均每天清雪量.27.(12分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.①当∠BAC=90°时.求抛物线G2的表达式;②若60°<∠BAC<120°,直接写出m的取值范围.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以应在③段上.故选C考点:实数与数轴的关系2、A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.3、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1800000这个数用科学记数法可以表示为故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.4、D【解析】

根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.5、A【解析】解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.6、A【解析】

先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D为AB中点∴CD=1∵点E、F分别为BC、BD中点∴EF=1故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.7、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:∵a=1,b=,c=,∴.∴此方程有两个不相等的实数根.故选C.8、B【解析】

观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.9、C【解析】分析:根据两直线平行,同位角相等可得再根据三角形内角与外角的性质可得∠C的度数.详解:∵AB∥CD,∴∵∴故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.10、A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.11、C【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、D【解析】

根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是2+42=3,平均数为1+2+4+54=3,

∴方差为14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新数据的中位数为3,平均数为1+2+3+【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】

根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵点A是双曲线y=-在第二象限分支上的一个动点,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.14、-4【解析】:由反比例函数解析式可知:系数,∵S△AOB=2即,∴;又由双曲线在二、四象限k<0,∴k=-415、【解析】

根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【详解】解:∵∠AED=∠ABD(同弧所对的圆周角相等),∴tan∠AED=tanB=.故答案为:.【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.16、1【解析】试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.考点:三角形相似的应用.17、x(y+2)(y-2)【解析】

原式提取x,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解析】

过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,

∵房子后坡度AB与前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.20、(1);(2)20分钟.【解析】

(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.21、方程无解【解析】

找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.【详解】解:方程的两边同乘(x+1)(x−1),得:x+12x2x2∴此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.22、(1)(2)△ABC∽△DEF.【解析】

(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;

(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【详解】(1)故答案为(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.23、(1)见解析(2)见解析【解析】

(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.24、(1)篮球每个50元,排球每个30元.(2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得.答:篮球每个50元,排球每个30元.(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.25、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论