概率与统计解答题综合(解析版)-2024年中考=数学=题型归纳与变式演练(全国卷)_第1页
概率与统计解答题综合(解析版)-2024年中考=数学=题型归纳与变式演练(全国卷)_第2页
概率与统计解答题综合(解析版)-2024年中考=数学=题型归纳与变式演练(全国卷)_第3页
概率与统计解答题综合(解析版)-2024年中考=数学=题型归纳与变式演练(全国卷)_第4页
概率与统计解答题综合(解析版)-2024年中考=数学=题型归纳与变式演练(全国卷)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02概率与统计解答题综合

目录

题型01概率....................................................................................

题型02数据统计...............................................................................

题型03数据分析...............................................................................

中考练场.......................................................................................

热点题型归纳

题型01概率

【解题策略】

一般地,如果在一次实验中,有n种可能结果,并且它们发生的可能性相等,事件A包含其

中m种结果,那么事件A发生的概率P(A)=—o

n

用频率来估计:事件A的概率:一般地,在大量重复进行同一实验时,事件A发生的频率,

总是接近于某个常数,在它附近摆动.这个常数叫做事件A的概率,记作P(A)

【典例分析】

例.(2023•辽宁丹东•中考真题)为提高学生的安全意识,某学校组织学生参加了“安全知识

答题”活动.该校随机抽取部分学生答题成绩进行统计,将成绩分为四个等级:A(优秀),

良好),C(一般),。(不合格),并根据结果绘制成如图所示的两幅不完整的统计图.

第1页共41页

学生答题成绩条形统计图

学生答题成绩扇形统计图

根据图中所给信息解答下列问题:

(1)这次抽样调查共抽取_____人,条形统计图中的冽=;

(2)将条形统计图补充完整,在扇形统计图中,求C等所在扇形圆心角的度数;

(3)该校有1200名学生,估计该校学生答题成绩为A等和2等共有多少人;

(4)学校要从答题成绩为A等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名

学生去做“安全知识宣传员”,请用列表或画树状图的方法,求抽出的两名学生恰好是甲和丁

的概率.

【答案】(1)50,7

(2)条形统计图见解析,108°

(3)该校学生答题成绩为A等和B等共有672人

【分析】(1)用8等级的人数除以其所占百分比,即可求出抽取的总人数,用抽取总人数

乘以成绩为。等级所占百分比,即可求出施的值;

(2)用抽取总人数乘以A等级的人数所占百分比,求出成绩为A等级的人数,即可补全条

形统计图;先求出成绩为C等级的人数所占百分比,再用360度乘以成绩为C等级的人数

所占百分比即可求出C等级所在扇形圆心角的度数;

(3)用全校人数乘以成绩为A等级和3等级人数所占百分比,即可求解;

(4)根据题意列出表格,数出所有的情况数和符合条件的情况数,再根据概率公式求解即

可.

第2页共41页

【详解】(1)解:16+32%=50(人),

777=50x14%=7,

故答案为:50,7;

(2)解:成绩为C等级人数所占百分比:1-24%-32%-14%=30%,

:.C等级所在扇形圆心角的度数:360°x30%=108°,

成绩为A等级的人数:50x24%=12(人),

补全条形统计图如图所示:

学生答题成绩条形统计图

(3)解:1200x(24%+32%)=672(人),

答:该校学生答题成绩为A等级和8等级共有672人;

(4)解:根据题意,列出表格如下:

第一名第二名甲乙丙T

甲甲乙甲丙甲丁

乙乙甲乙丙乙丁

丙丙甲丙乙丙丁

第3页共41页

T丁甲丁乙丁丙

由表可知,一共有12种情况,抽出的两名学生恰好是甲和丁的有2种情况,

抽出的两名学生恰好是甲和丁的概率==2=;1.

126

【点睛】题目主要考查条形及扇形统计图,通过树状图或列表法求概率,理解题意,熟练掌

握这些知识点是解题关键.

【变式演练】

1.(2024.安徽阜阳.一模)某中学为了提高学生对航天的认识,在全校开展了主题为“弘扬

航天精神”的知识竞赛.为了解学生的竞赛情况,学校从中随机抽取了部分参赛学生的成绩,

整理并绘制出如下两幅不完整的统计图.

6

4

2

0

8

6

4

2

O

请根据图中信息解答以下问题:

(1)本次调查随机抽取了名参赛学生的成绩.在扇形统计图中尸组所在扇形的圆心角

是;

(2)补全频数分布直方图;

(3)成绩前四名的学生中正好是两名男生和两名女生,若从这四名学生中随机选两人作为该

校的航天知识宣传员,求恰好选中一名男生和一名女生的概率.

【答案】(1)50,28.8°

第4页共41页

(2)见解析

⑶|

【分析】本题主要考查了统计图的选择,统计图的应用,求概率,从统计图中获取信息是解

题的关键.

(1)观察统计图可得C组的人数和所占的百分比,可得抽取的总人数,再用尸组所占的百

分比乘以360。得出答案;

(2)求出。组的人数,再补全统计图即可;

(3)画出树状图,再根据概率公式计算.

【详解】(1)由统计图可知总人数为随机抽取的总人数为10+20%=50(人),

4

尸组所在扇形统计图的圆心角是左、360。=28.8。.

故答案为:50,28.8°;

(2)。组的人数是50-2_6-10-16-4=12(人),

补全图形如下:

6

4

2

0

8

6

4

2

O

(3)画树状图如下:

开始

男I男2女1女2

男2女I女2男舷I女2男I男2女2男I男2女I

共有12种等可能的结果,恰好选中一名男生和一名女生的结果有8种,

第5页共41页

,恰好选中一名男生和一名女生的概率为*|.

2.(2023・广东肇庆•二模)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活

动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘

制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(写出必要的计算过程)

(1)这次调查的学生共有多少名?

(2)请将条形统计图补充完整.

(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,

求恰好选到学生关注最多的两个主题的概率.(将互助、平等、感恩、和谐、进取依次记为

A、B、C、D、E)

【答案】(1)280名;(2)见解析;(3):

【分析】本题考查条形统计图和扇形统计图的关联、用树状图或列表法求概率,能从统计图

中找到相关信息是解答的关键.

(1)用关注“平等”的人数除以其所占的百分比求解即可;

(2)求出关注“互助”和“进取”的人数,进而补全统计图即可;

(3)画出树状图得到所有等可能的结果,再找到满足条件的结果数,然后利用概率公式求

解即可.

【详解】(1)解:56^20%=280(名),

第6页共41页

答:这次调查的学生共有280名;

(2)解:关注“互助”的人数为280xl5%=42(名),关注“进取”的人数为

280-42-56-28-70=84(名),

补全条形统计图,如图所示,

(3)解:由题意,学生关注最多的两个主题是“感恩”和“进取”,即“心和

列树状图如下:

开始

ABD

/TV

BCDEACDEABDEABCEABCD

由图知,共有20种等可能的结果数,其中恰好选至『七'和有两种,

21

所以恰好选到“进取”和“感恩”两个主题的概率.

3.(2023・广东汕头•一模)“1000米跑步”是体育中考的必考项目,某校为了了解学生长跑

能力,学校从初三400名学生中随机抽取部分学生进行测试,并将跑步时间折算成得分绘制

统计图(部分信息未给出),其中扇形统计图中8分的圆心角度数为90。.

第7页共41页

所抽取学生“1(X)0米跑步”测试成绩所抽取学生“1000米跑步”测试成绩

的频数我方图的扇形统计图

由图中给出的信息解答下列问题:

(1)求抽取学生的总人数,并补全频数分布直方图;

(2)这次抽测成绩的中位数是几分?

(3)如果全体初三学生都参加测试,请你根据抽样测试的结果估计该校初三学生获得10分学

生的人数;

(4)经过一段时间训练,学校将从之前抽测获得7分的4位同学(2名男生,2名女生)当中

抽取2人再次测试,请用列表或者画树状图的方法计算恰好抽到1名男生1名女生的概率.

【答案】(1)80名,见解析(2)9分(3)120名(4)§

【分析】本题考查的是用树状图法求概率以及频数分布直方图和扇形统计图.树状图法可以

不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.注意概率=所求情

况数与总情况数之比是解题的关键.

(1)用获得8分的学生以外剩余学生的数量除以对应的百分比即可得到抽取的总人数,即

可解决问题;

(2)根据中位数定义进行求解即可;

(3)由初三学生总人数乘以获得10分学生的人数所占的比例即可;

(4)画树状图,共有12种等可能的结果,恰好抽到1名男生和1名女生的结果有8种,再

由概率公式求解即可.

90°

【详解】(1)解:获得8分的学生的人数占抽取人数的百分数为:100%=25%,

则剩余学生人数为:4+32+24=60(名),占抽取人数的75%,

第8页共41页

,抽取学生的总人数为:60+75%=80(名),,获得8分的学生的人数为:80—60=20(名),

补全频数分布直方图如下:

所抽取学生“1000米胞步”测试成绩

的频数直方图

(2)这次抽测成绩的中位数为:于=9(分);

(3)估计该校初三学生获得10分学生的人数为:400x^=120(名);

OU

(4)画树状图如下:

冷女△公女小

由树状图可知,共有12种等可能的结果,恰好抽到1名男生和1名女生的结果有8种,

恰好抽到1名男生和1名女生的概率为2=|.

4.(2022・辽宁本溪.一模)自深圳经济特区建立至今50年以来,深圳本土诞生了许多优秀

的科技企业,华为、腾讯、中兴、大疆就是其中的四个杰出代表.某数学兴趣小组在校内对

这四个企业进行“你最认可的特区科技企业”调查活动.兴趣小组随机调查了加人(每人必选

一个且只能选一个),并将调查结果绘制成了如下尚不完整的统计图,请根据图中信息回答

以下问题:

第9页共41页

你最认可的特区科技企业条形统计图你最认可的特区科技企业闹形统计图

(1)请将以上两个统计图补充完整;

(2)机=,“腾讯”所在扇形的圆心角的度数为;

(3)该校共有2000名同学,估计最认可“华为”的同学大约有名;

(4)已知A,8两名同学都最认可“华为”,C同学最认可“腾讯”,。同学最认可“中兴”,从这

四名同学中随机抽取两名同学,请你利用画树状图或列表的方法求出这两名同学最认可的特

区科技企业不二样的概率.

【答案】(1)见解析(2)200,108°;(3)800(4)1

6

【分析】本题主要考查了统计与概率,解题的关键是熟练掌握条形统计图、扇形统计图、用

样本评估总体、树状图的性质.

(1)结合条形统计图和扇形统计图,可计算出调查的总人数、认可中兴的人数,认可腾讯

的占比,即可补全统计图;

(2)由(1)可知优的值、腾讯的占比,再根据腾讯的占比可求出“腾讯”所在扇形的圆心角;

(3)根据用样本评估总体的性质计算,即可得到答案;

(4)根据树状图法求概率的性质计算,即可得到答案.

【详解】(1)解:调查的总人数为:80+40%=200(人),

中兴的人数:200义2。%=40(人),

腾讯的占比:60+200=0.3=30%,

两个统计图补充完整如下.

第10页共41页

你最认可的特区科技企业条形统计图你最认可的特区科技企业蝌形统计图

(2)由(1)知:加=200,腾讯的占比:30%,

:・“腾讯”所在扇形的圆心角的度数为:360。*30%=108。,

故答案为:200,108°;

(3)该校共有2000名同学,估计最认可“华为”的同学大约有:2000x40%=800(名),

故答案为:800:

(4)列表如下:

ABCD

A(华为,华为)(腾讯,华为)(中兴,华为)

B(华为,华为)(腾讯,华为)(中兴,华为)

C(华为,腾讯)(华为,腾讯)(中兴,腾讯)

D(华为,中兴)(华为,中兴)(腾讯,中兴)

从这四名同学中随机抽取两名同学,一共有12种等可能的结果,其中这两名同学最认可的

特区科技企业不曲的结果有1。种,所以所求概率尸=24

题型02数据统计

【解题策略】

第11页共41页

基础概念要分清:平均数:在一组数据中,用数据的总和除以数据的总个数

就得到这组数据的平均数;

总体:把所要考查的对象的全体叫做总体;

中位数:将一组数据从小到大依次排列,位于正中间位置

个体:把组成总体的每一个考查对象叫做个体;的数(或正中间两个数据的平均数)叫做这组数

据的中位数;

样本:从总体中取出的一部分个体叫做总体的一个样本;

众数:在一组数据中,出现频数最多的数叫做这组数据的

样本容量:样本中包含的个体的个数叫做样本容量;

众数;

频数:在记录实验数据时,每个对象出现的次数称为频数;

极差:一组数据中的最大值减去最小值所得的差称为极差;

频率:每个对象出现的次数与总次数的比值(或者百分比)

方差:我们可以用“先平均,再求差,然后平方,最后再

称为频率;

平均”得到的结果表示一组数据偏离平均值的情

况,这个结果通常称为方差.

频数、频率、频数分布表,频数分布直方图是重要考点;相关计算:总量;答;频数=总数X频率。

【典例分析】

例.(2023•浙江湖州•中考真题)4月23日是世界读书日.为了解学生的阅读喜好,丰富学

校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了

部分学生,要求每名学生从中选择自己最喜欢的类,将抽查结果绘制成如下统计图(不完整).

(1)求被抽查的学生人数,并求出扇形统计图中,”的值.

第12页共41页

(2)请将条形统计图补充完整.(温馨提示:请画在答题卷相对应的图上)

(3)若该校共有1200名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数.

【答案】(1)200A,40

(2)见解析

(3)360人

【分析】(1)根据其它类的人数和所占的百分比求出调查的总人数,用科技类的人数比上

总人数,即可得出科技类的学生人数占抽样人数的百分比;

(2)用总人数减去文学类、科技类和其他的人数,求出艺术类的人数,补条形统计图即可;

(3)用1200乘以文学类书籍所占的百分比,即可得出答案.

【详解】(1)被抽查的学生人数是40+20%=200(人)

on

——X100%=40%,

200

扇形统计图中m的值是40.

(2)V200-60-80-40=20(人),

补全的条形统计图如图所示

(3)V1200x——=360(人),

200

估计全校最喜欢“文学类”书籍的学生人数共有360人.

【点睛】本题考查的是条形统计图及其应用与用样本估计总体的知识,从不同的统计图中得

到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,能够根据各

个数据进行正确计算.

第13页共41页

【变式演练】

1.(2024.山西朔州.一模)运动是一切生命的源泉,运动使人健康、使人聪明、使人快乐,

运动不仅能改变人的体质,更能提升人的品格.某初级中学为了解学生每周在家运动时间f

(单位:/7)的情况,随机抽取了部分学生进行问卷调查,并将收集到的数据整理分析,共

分为A,B,C,D,E五个组别,其中A组的数据分别为0.5,0.4,0.4,0.4,0.3,绘制成

如下不完整的统计图表.

学生每周在家运动时间的频数分布表

组别时间〃h频数

A0<r<0.55

B0.5<r<l12

Ca

D1.5<r<215

Et>28

请根据以上信息,解答下列问题.

(DA组数据的中位数是;本次调查的样本容量是;C组所在扇形的圆心角的度

数是.

(2)若该校有1500名学生,估计该校学生每周在家运动时间超过1/7的人数.

【答案】(1)0.4;60;120°(2)1075

【分析】(1)利用中位数的概念求解,由。组的人数及其所占百分比可得样本容量,用360。

乘以5组所占百分比即可;

第14页共41页

(2)用总人数乘以样本中学生劳动时间超过l/i的人数所占百分比即可.

【详解】(1)解:A组的数据分别为:0.5,0.4,0.4,0.3,0.3,A组数据的中位数是

0.4;

本次调查的样本容量是15+25%=60,

C组的频数:。=60-5—12—15-8=20,

90

C组所在扇形的圆心角的大小是360。义)=120。.

60

(2)解:a=20,:.1500x---=1075(人),

60

答:估计该校学生劳动时间超过周的大约有1075人.

【点睛】本题考查的是频数分布表和扇形统计图的综合运用,样本容量,中位数,用样本估

计总体.读懂统计图,从统计图表中得到必要的信息,求出本次调查的样本容量是解决问题

的关键.

2.(2024•陕西西安・模拟预测)为了普及科学知识,传播科学思想,弘扬科学精神,某校举

行了青少年科普知识竞赛.随机抽取机名学生的竞赛成绩,把成绩分成四个等级

(A60<x<70;B:70<x<80;C:80<x<90;D90VxV100),并绘制了如下不完整的频数

分布直方图和扇形统计图.

请根据以上信息,解答下列问题:

⑴填空:"=_;

(2)补全频数分布直方图,所抽取学生的成绩的中位数落在一等级;

(3)若成绩达到C和。等级将获得“科普达人”称号,请你估计该校参加竞赛的2000名学生中

获得“科普达人”称号的学生人数.

第15页共41页

【答案】(1)150,40;(2)补全频数分布直方图见解析,C;

(3)该校参加竞赛的2000名学生中获得“科普达人”称号的学生人数由1160人.

【分析】(1)频数分布直方图中8等级的人数是45人,所占百分比是30%,由此可求出抽

取的总人数加;根据总体人数可求出C等级人数占的百分比九%,

(2)由(1)得到C等级人数,即可补全频数分布直方图,根据中位数的定义,即可求出

中位数落在哪一组;

(3)根据样本所占百分比估算总体的方法即可求解;

本题主要考查调查与统计的相关知识,理解频数分布直方图、扇形统计图中的相关信息,掌

握运用样本百分比估算总体数量,求中位数分方法是解题的关键.

【详解】(1)解:频数分布直方图中B等级的人数是45人,所占百分比是30%,

由此可求出抽取的总人数%=45+30%=150(人),

则C等级人数为:150-18-45-27=60(人),;•〃%=——x100%=40%,故答案为:150,

40;

(2)由(1)得:C等级人数为60人,补全频数分布直方图如图,

科普知识竞赛成绩频数HZr,图

由题意得:A等级共18人,8等级共45人,C等级共60人,。等级共27人,共150人,

所抽取学生的成绩的中位数为第75和76名的平均数,故中位数落在C等级,故答案为:C;

(3)该校参加竞赛的2000名学生中获得“科普达人”称号的学生人数为:

2000x(40%+18%)=2000x58%=1160(人),

第16页共41页

答:该校参加竞赛的2000名学生中获得“科普达人”称号的学生人数由1160人.

3.(2024・陕西西安•一模)某同学进行社会调查,随机抽查了某小区的40户家庭的年收入

(万元)情况,并绘制了如图不完整的频数表和频数分布直方图.

(2)如果每一组的平均年收入均以组中值计算,这40户家庭的年平均收入为多少万元?

(3)如果该小区有1200户住户,请你估计该小区有多少户家庭的年收入低于18万元?

【答案】(1)4,补全图形见解析

(2)这40户家庭的年平均收入至少为23.2万元

(3)该小区有240户家庭的年收入低于18万元

【分析】本题主要考查了频数分布表和频数分布直方图.熟练掌握频数分布表和频数分布直

方图的互补性,中位数的定义及计算,平均数的定义及计算,样本估计总题,是解决问题的

第17页共41页

关键.

(1)根据调查的户数总共为40户,结合频数分布直方图中其它收入段的人数,用减法即可

求出26Wx<30用户频数分布表的人数小值,从而补全频数分布直方图;根据中位数的定

义,结合频数分布表,得到中位数所在位置;

(2)根据加权平均数的计算公式,频数分布表中数据,计算调查的40户的平均数即可;

(3)先根据频数分布直方图得出年收入低于18万元的户数占全部户数的分率,再乘以1200,

即可解答.

【详解】(1)由题意可得,

26Vx<30的用户有:m=40-4-4-6-12-4=10(户),

补全的频数分布直方图如图所示,

中位数是第20个和第21个数据的平均数,

由频数分布表可得,中位数落在22万元至26万元收入段内,即第4组;故答案为:4;

(2)由频数表可得,这40户家庭的年平均收入至少为:

4x12+4x16+6x20+12x24+10x28+4x32…一、

----------------------------------------------------------=23.2(万兀),

40

故这40户家庭的年平均收入至少为23.2万元;

O

(3)由题意可得,1200x—=240(户).

40

故该小区有240户家庭的年收入低于18万元.

题型03数据分析

【解题策略】

第18页共41页

计算方差的公式:设一组数据是X】'与、M是这组数据的平均数。则这组数据的

方差是:

2

s'=~[(X1-x)J+区-X)+…+(x.・xf]

n

【典例分析】

例.(2023・江苏盐城・中考真题)盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒

临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.

某校生物兴趣小组去实地调查,绘制出如下统计图.

(注:麋鹿总头数=人工驯养头数+野生头数)

船城市大r国家级麋柜保护区

近年(《鹿头数折线统计图

盐城由大丰国章圾鹿鹿保护区6

有力幡动物种类阚形统计图座牌总头数—野生屡鹿头数

解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为1

②在折线统计图中,近6年野生麋鹿头数的中位数为头.

⑵填表:

年份201720182019202020212022

人工驯养麋鹿头数3473353136663861—3917

(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.

【答案】⑴14.4。,1585

(2)3980

(3)见解析

【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;

第19页共41页

(2)先排序,再计算中间的两个数的平均数;

(3)从人工驯养和野生保护两个方面表述即可.

【详解】(1)解:①在扇形统计图中,哺乳类所占的百分比为:1-54%-32%-10%=4%,

,哺乳类所在扇形的圆心角度数为:360°x4%=14.4°;

②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为:

765,1025,1350,1820,2503,3116,

近6年野生麋鹿头数的中位数为——-——=1585,

故答案为:14.4°,1585;

(2)解:6483-2503=3980,

故答案为:3980;

(3)加强对野生麋鹿的保护的同时,提高人工驯养的技术.

【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解

题的关键.

【变式演练】

1.(2023•江苏南通•二模)某校举办知识抢答比赛,九(1)班组织甲、乙两组各10名同学

进行班级内部初选,共10道选择题,答对8题以上(含8题)为优秀,对数据进行收集、

整理、分析如下:

表1:甲、乙两组选手答题统计表

答对题数5678910

甲组101521

乙组004321

表2:甲、乙两组选手答题分析表

第20页共41页

平均数中位数众数方差优秀率

甲组8881680%

乙组8a71b

(1)a=,b-;

(2)根据所学的统计知识,你认为哪组选手的成绩好,并写出至少两条你认为该组选手成绩

好的理由.

【答案】(1)8,60%;(2)甲组选手的成绩好;理由见解析

【分析】(1)根据中位数和优秀率的概念求解即可;

(2)从优秀率和方差、众数方面求解(答案不唯一,合理均可).

QIQQIOI1

【详解】(1)解:乙组数据的中位数。=1=8,优秀率6=二^、100%=60%,故答

210

案为:8、60%;

(2)我认为甲组选手的成绩好.

理由①两组平均数和中位数一样,但甲组的众数高,甲组的成绩较好;

②甲组优秀率高,优秀的学生多,甲组的成绩较好

2.(2024・湖北.一模)为提高学生安全防范意识和自我防护能力,立德中学开展了以生命安

全为主题的教育活动,为了解本次活动效果,进行了生命安全知识测试,并对成绩作出如下

统计分析.

【收集数据】从七年级、八年级各随机抽取40名学生的测试成绩.(满分100分,成绩都

是整数且不低于80分,90分及以上为优秀)

【整理数据】将抽取的两个年级的成绩分别进行整理,分成4B,C,。四组(用x表示测

试成绩),A组:80<x<85,2组:85<x<90,C组:90<x<95,。组:95<x<100.

【描述数据】根据统计数据,绘制成如下统计图.

第21页共41页

七年级抽取的学生成绩条形统计图八年级抽取的学生成绩扇形统计图

【分析数据】七年级、八年级抽取的学生成绩分析统计如下表:

年级平均数中位数众数方差

七年级91908822.5

八年级91919130.3

根据以「二统计数据,解答下列问题:

(1)补全条形统计图;

(2)假设该校八年级学生有800人,估计该年级在这次测试中成绩为优秀的学生人数;

(3)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.

【答案】(1)见解析;(2)520人;(3)见解析

【分析】本题主要考查了扇形统计图和条形推统计图,用样本估计总体,平均数、中位数、

众数、方差的意义等等:

(1)先求出七年级组别D的人数,进而补全统计图即可;

(2)用800乘以八年级样本中成绩为优秀的人数占比即可得到答案;

(3)根据平均数、中位数、众数、方差的意义求解即可.

【详解】(1)解:七年级组别D的人数为40-6-10-8=16人,

补全统计图如下:

第22页共41页

(2)解:800x(45%+20%)=520人,

...估计该年级在这次测试中成绩为优秀的学生人数为520人;

(3)解:平均数表示两个年级40人成绩的平均成绩;众数表示两个年级40人中得分在某

个分数的人数最多等等.

3.(2024・重庆大渡口•一模)为提高居民防范电信网络诈骗的意识,某社区举办相关知识比

赛.现从该社区甲、乙两个参赛代表队中各随机抽取10名队员的比赛成绩(满分100分),

并进行整理、描述和分析(分数用x表示,共分为四组:A.60<A<70,B.70Vx<80,

C.80Vx<90,D.x>90),下面给出了部分信息:

甲队10名队员的比赛成绩:69,79,88,90,92,94,94,96,98,100.

乙队10名队员的比赛成绩在。组中的所有数据为:92,92,97,99,99,99.

甲、乙代表队中抽取的队员比赛成绩统计表

代表队平均数中位数众数“C'组所占百分比

甲90a9410%

乙9092b20%

乙代表队中抽取的队员

比赛成绩扇形统计图

根据以上信息,解答下列问题:

⑴填空:a=,b=,加=

第23页共41页

⑵该社区甲代表队有200名队员、乙代表队有230名队员参加了此次比赛,估计此次比赛

成绩在A组的队员共有多少名;

(3)根据以上数据,你认为甲、乙哪个代表队的比赛成绩更好?请说明理由(写出一条理由

即可).

【答案】(1)93,99,10

⑵43

(3)甲队,理由见详解.

【分析】本题主要考查中位数、众数、平均数以及所占比例的意义和计算方法.

(1)根据中位数、众数的定义和百分比之和为1求解即可;

(2)甲队总人数乘以样本中A组所占比例加上乙队总人数乘以样本中A组所占比例即可.

(3)根据平均数和中位数的定义求解即可.

【详解】(1)解:甲队10名队员的比赛成绩:69,79,88,90,92,94,94,96,98,100.

所以。=;(92+94)=93,

m%=|1-10%-20%--xlOO%1=10%,

I10)

m=10

根据成绩统计表和扇形统计图可知:

乙队10名队员的比赛中A组有1人,B组有1人,C组有2人,

,乙队10名队员中众数为O组出现3次的99.

故答案为:93,99,10.

(2)根据题意,甲队A组人员有1人,组占比为:10%,

由(1)可知乙队A组占比:10%,

.,•此次比赛成绩在A组的队员共有200xl0%+230xl0%=43(人),

(3)根据甲、乙代表队比赛成绩统计表,可知:甲队的比赛成绩更好,

第24页共41页

代表队平均数中位数众数

甲909394

乙909299

:甲、乙队平均数都为相等,而甲队的中位数大于乙队,

甲队的比赛成绩更好.

4.(2023・山西太原•模拟预测)运动是一切生命的源泉,运动使人健康、聪明、快乐,运动

不仅能改变人的体质,更能改变人的品格,某中学为了解学生一周在家运动时长f(单位:

小时)的情况,从本校学生中随机抽取了部分学生进行问卷调查,并将收集到的数据整理分

析,共分为四组(At<l,BA<t<2,C.2<t<3,<4,其中每周运动时间不少于3小

时为达标),绘制了如下两幅不完整的统计图.根据以上信息,解答下列问题:

学生每周在家运动学生每周在家运

时间频数分布直方图动时间扇形统计图

(1)在这次抽样调查中,共调查了名学生.

(2)请补全频数分布直方图,并计算在扇形统计图中C组所对应扇形的圆心角的度数.

(3)若该校有学生1000人,试估计该校学生一周在家运动时长不足2小时的人数.

(4)根据调查结果,请对该学校学生每周在家运动情况作出评价,并提出一条合理化的建议.

【答案】(1)120

(2)144°,补图见解析

(3)350

(4)需要加强学生在家体育锻炼,努力提高身体素质(答案不唯一,合情合理即可)

第25页共41页

【分析】本题考查频数分布直方图、扇形统计图以及样本估计总体,掌握频率=建频数是正

确解答的前提.

频数

(1)由两个统计图可知,“3组”的频数为36人,占调查总人数的30%,根据频率=答即

总数

可求出调查总人数;

(2)求出样本中“C组”的人数即可补全条形统计图,求出“C组”人数所占调查人数的百分

比,即可求出相应的圆心角的度数;

(3)求出样本中一周在家运动时长不足2小时的人数所占的百分比,进而估计总体总体中

频数

一周在家运动时长不足2小时的人数所占的百分比,再根据频率=答进行即可;

总数

(4)根据各个组所占的百分比,提出相应的建议即可.

【详解】(1)36+30%=120(名),故答案为:120;

(2)样本中“C组”的人数:

120-6-36-30=48(名),

48

扇形统计图中“C组”所对应的圆心角的度数为:360°x-£-=144°,

补全条形统计图如图:

(3)1000x-^-=350(人),

答:该校1000名学生中一周在家运动时长不足2小时的人数大约有350人;

(4)需要加强学生在家体育锻炼,努力提高身体素质.

第26页共41页

中考练场

1.(2023•浙江衢州•中考真题)【数据的收集与整理】

根据国家统计局统一部署,衢州市统计局对2022年我市人口变动情况进行了抽样调查,抽

样比例为5%.根据抽样结果推算,我市2022年的出生率为5.5?,死亡率为8%,人口自

然增长率为一2.5?,常住人口数为。人(%表示千分号).(数据来源:衢州市统计局)

【数据分析】

⑴请根据信息推测人口自然增长率与出生率、死亡率的关系;

⑵已知本次调查的样本容量为11450,请推算。的值;

(3)将我市及全国近五年的人口自然增长率情况绘制成如下统计图.根据统计图分析:

2018〜2022年年末全国、衢

州市人口自然增长率统计图

5

4

3

2

1

0

1

-

-2

-3

②为扭转目前人口自然增长率的趋势,请给出一条合理化建议.

【答案】(1)人口自然增长率=出生率一死亡率

⑵。=2290000

⑶①我国近五年的人口自然增长率逐年下降;自2021年以来,衢州市得人口呈负增长(答

案不唯一);

②建议国家加大政策优惠,鼓励人们多生育(答案不唯一)

第27页共41页

【分析】(1)根据题意,可得人口自然增长率等于出生率减死亡率;

(2)根据样本容量=总体x抽样比例求出。的值即可;

(3)①根据统计图进行解答,合理即可;

②根据目前人口自然增长率的趋势,提出合理建议,即可解答.

【详解】(1)解:根据题意可知,人口自然增长率=出生率一死亡率;

(2)解:由题意,可得5%。=11450,

解得a=2290000;

(3)解:①我国近五年的人口自然增长率逐年下降;自2021年以来,衢州市得人口呈负增

长;

②建议国家加大政策优惠,鼓励人们多生育.

【点睛】本题考查了总体,合体,样本,样本容量,折线统计图,用调查作决策,看懂折线

图,并熟知上述概念之间的联系是解题的关键.

2.(2023・湖北襄阳•中考真题)三月是文明礼貌月,我市某校以“知文明礼仪,做文明少年”

为主题开展了一系列活动,并在活动后期对七、八年级学生进行了文明礼仪知识测试,测试

结果显示所有学生成绩都不低于75分(满分100分).

【收集数据】随机从七、八年级各抽取50名学生的测试成绩,进行整理和分析(成绩得分

都是整数).

【整理数据】将抽取的两个年级的成绩进行整理(用x表示成绩,分成五组:A-75<x<80,

B.80<x<85,C.85<x<90,D.90<x<95,£.95<x<100).

①八年级学生成绩在。组的具体数据是:91,92,94,94,94,94,94.

②将八年级的样本数据整理并绘制成不完整的频数分布直方图(如图):

第28页共41页

八年级抽取学生测试

【分析数据】两个年级样本数据的平均数、中位数、众数、方差如下表:

年级平均数中位数众数方差

七年级929210057.4

八年级92.6m10049.2

根据以」二信息,解答下列问题:

(1)本次抽取八年级学生的样本容量是;

(2)频数分布直方图中,C组的频数是;

(3)本次抽取八年级学生成绩的中位数机=;

(4)分析两个年级样本数据的对比表,你认为年级的学生测试成绩较整齐(填“七”或

“八”);

(5)若八年级有400名学生参加了此次测试,估计此次参加测试的学生中,该年级成绩不低于

95分的学生有人.

【答案】⑴50

⑵13

(3)93

⑷八

(5)该年级成绩不低于95分的学生约有160人;

【分析】(1)根据样本容量是抽取的个数求解即可得到答案;

第29页共41页

(2)利用总数减去其它频数即可得到答案;

(3)找到最中间两个数求平均即可得到答案;

(4)根据方差越大波动越大,方差越小波动越小即可得到答案;

(5)利用总人数乘以符合的频率即可得到答案;

【详解】(1)解::.随机从七、八年级各抽取50名学生的测试成绩,进行整理和分析,

,本次抽取八年级学生的样本容量是50,

故答案为:50;

(2)解:V50-4-6-7-20=13,

•♦•C组的频数是13;

(3)解:V4+6+13=23<25,4+6+13+7=30>25,

中位数落在D组上,

•*.25,26两个数是:92,94,

.••中位数是:加=9三2+丝94=93;

(4)解:V57.4>49.2,

八年级的学生测试成绩较整齐;

(5)解:由题意可得,

20

400X—=160(人),

答:该年级成绩不低于95分的学生约有160人;

【点睛】本题考查中位数,方差,样本容量,利用频率估算,解题的关键是熟练掌握几个定

义.

3.(2023・四川甘孜・中考真题)某校为开设足球、篮球、排球选修课程,现对该校学生就“你

最喜欢的球类运动”进行抽样调查(要求在“足球”、“篮球”、“排球”中选择一种),将调查

数据绘制成如下的两幅统计图.

第30页共41页

请根据图中的信息,解答下列问题:

(1)共调查了名学生,把条形统计图补充完整;

(2)求扇形统计图中“足球”对应的扇形圆心角的度数;

(3)该校共有1200名学生,请你估计其中最喜欢排球的学生人数.

【答案】(1)40,图见解析

(2)90°

(3)480

【分析】(1)喜欢足球的有10人,所占的百分比是25%,据此即可求得总人数,进而补全

统计图;

(2)利用360。乘以对应的百分比即可求解;

(3)利用总人数乘以对应的百分比即可求解.

【详解】(1)解:调查的总人数是:10+25%=40(人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论