




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市2025届高三年级总复习质量检测试题(三)数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为纯虚数,则z=()A. B.6i C. D.202.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.33.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.4.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.5.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,186.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.807.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.28.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.9.函数的部分图象如图所示,则()A.6 B.5 C.4 D.310.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.11.函数(),当时,的值域为,则的范围为()A. B. C. D.12.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.对于任意的正数,不等式恒成立,则的最大值为_____.14.已知数列的前项和为,且满足,则______15.函数的值域为_________.16.根据如图所示的伪代码,若输入的的值为2,则输出的的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.18.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.20.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;21.(12分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.22.(10分)在中,,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.本题考查复数的概念与运算,属基础题.2.B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.3.D【解析】
由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.4.B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.5.A【解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.6.D【解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.7.A【解析】
设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.8.D【解析】
根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.9.A【解析】
根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.10.B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.11.B【解析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.12.B【解析】
通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.14.【解析】
对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【详解】解:,可得时,,时,,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.本小题主要考查已知求,考查等比数列前项和公式,属于中档题.15.【解析】
利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.16.【解析】
满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】
(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:∵侧面为菱形,∴,且为及的中点,又,则为直角三角形,,又,,即,而为平面内的两条相交直线,平面.(2)平面,平面,,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形,,,,设平面的法向量为,则,即,∴可取,设平面的法向量为,则.同理可取,由图示可知二面角为锐二面角,∴二面角的余弦值为.本题考查了线面垂直的判定方法,利用空间向量方法求二面角夹角的余弦值,注意建系时先证明三条两两垂直的直线,属于中档题.18.(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)直接代入再由诱导公式计算可得;(Ⅱ)先得到,再根据利用两角差的余弦公式计算可得.【详解】解:(Ⅰ);(Ⅱ)因为所以,由得,又因为,故,所以,所以.本题考查了三角函数中的恒等变换应用,属于中档题.20.(1)(2)【解析】
(1)将,利用三角恒等变换转化为:,,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【详解】(1),,,,即的值域为;(2)由,得,又为的内角,所以,又因为在中,,所以,所以.本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于中档题,21.(1)极大值,极小值;(2)详见解析.【解析】
首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【详解】由题意得:定义域为,,(1)当时,,当和时,;当时,,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:.,,即证:,设,令,则,在上单调递增,,则由,从而有:.本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入户门窗合同标准文本
- 产权调换协议合同标准文本
- 健身房运营合同样本
- 企业物业托管合同样本
- 上海职工劳务合同范例
- 住宿用餐结算合同样本
- skf轴承采购合同标准文本
- 供热退费合同样本
- 与艺人签约合同标准文本
- 不可撤销佣金合同样本
- 泛血管疾病抗栓治疗中国专家共识(2024版)
- 婚内忠诚协议书范本电子版
- 2024年安徽省初中(八年级)学业水平考试初二会考生物试卷真题
- 2024CSCO头颈部肿瘤诊疗指南解读
- 国开2024《人文英语4》边学边练参考答案
- 质量手册(质量保证手册,压力容器)
- 20210年中考英语复习:阅读理解信息归纳摘录考题汇编(含答案)
- 拒绝早恋主题班会 课件(34张)2023-2024学年主题班会
- 美容美体艺术专业人才培养方案(中职)
- 第二单元《认识多位数》(单元测试)-2023-2024学年苏教版数学四年级下册
- 护工生活护理及排泄护理
评论
0/150
提交评论