2024届贵州省黔南州中考数学五模试卷含解析_第1页
2024届贵州省黔南州中考数学五模试卷含解析_第2页
2024届贵州省黔南州中考数学五模试卷含解析_第3页
2024届贵州省黔南州中考数学五模试卷含解析_第4页
2024届贵州省黔南州中考数学五模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省黔南州中考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣52.下列方程中是一元二次方程的是()A. B.C. D.3.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为()A. B. C. D.4.-的绝对值是()A.-4 B. C.4 D.0.45.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1076.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.7.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm8.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是()A.①②B.①③C.②③D.①②③9.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-310.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如图图形中,是中心对称图形的是()A. B. C. D.12.如图图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在中,,,,,,点在上,交于点,交于点,当时,________.14.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.15.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=34,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.17.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.18.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出边上的中线;在图2中画出,使得.20.(6分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.21.(6分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.22.(8分)画出二次函数y=(x﹣1)2的图象.23.(8分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?24.(10分)如图:求作一点P,使,并且使点P到的两边的距离相等.25.(10分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.26.(12分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.27.(12分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.2、C【解析】

找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C.【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.3、C【解析】

先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则

当0<x≤2,y=x,

当2<x≤4,y=1,

由以上分析可知,这个分段函数的图象是C.

故选C.4、B【解析】

直接用绝对值的意义求解.【详解】−的绝对值是.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.5、A【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6700000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频7、C【解析】

由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.【详解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.8、B【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10、A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.11、D【解析】

根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.12、A【解析】A.是轴对称图形,是中心对称图形,故本选项正确;B.是中心对称图,不是轴对称图形,故本选项错误;C.不是中心对称图,是轴对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误。故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】

如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.【详解】如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案为:1.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.14、【解析】

一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:故答案为:.【点睛】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.15、②③.【解析】试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即当△DCE为直角三角形时,BD=1或214故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.16、【解析】设每只雀、燕的重量各为x两,y两,由题意得:故答案是:或.17、6﹣2【解析】

由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.【详解】解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD=2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.【点睛】此题的重点是能够计算出四边形的面积.注意发现全等三角形.18、30°【解析】试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)见解析.【解析】

(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【详解】(1)如图所示:CD即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.20、(1);(2)当m=2时,四边形CQMD为平行四边形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;

(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:y=−x+2,设点M(m,−m+2),Q(m,m2−m−2),可得MQ=−m2+m+4,根据平行四边形的性质可得QM=CD=4,即−m2+m+4=4可解得m=2;

(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【详解】(1)由题意知,∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,∴解得:∴所求抛物线的解析式为(2)由(1)知抛物线的解析式为,令x=0,得y=﹣2∴点C的坐标为C(0,﹣2)∵点D与点C关于x轴对称∴点D的坐标为D(0,2)设直线BD的解析式为:y=kx+2且B(4,0)∴0=4k+2,解得:∴直线BD的解析式为:∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q∴可设点M,Q∴MQ=∵四边形CQMD是平行四边形∴QM=CD=4,即=4解得:m1=2,m2=0(舍去)∴当m=2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①当∠BDQ=90°时,则BD2+DQ2=BQ2,∴解得:m1=8,m2=﹣1,此时Q1(8,18),Q2(﹣1,0)②当∠DBQ=90°时,则BD2+BQ2=DQ2,∴解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.21、见解析【解析】

先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.22、见解析【解析】

首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x…﹣10123…y…41014…如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.23、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.【解析】

(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得:,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:.因为为正整数,故或3;答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24、见解析【解析】

利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.25、(1)证明见解析;(2).【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.26、原式=,把x=2代入的原式=1.【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式==当x=2时,原式=127、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论