小学奥数第35讲-逻辑思路(含解题思路)_第1页
小学奥数第35讲-逻辑思路(含解题思路)_第2页
小学奥数第35讲-逻辑思路(含解题思路)_第3页
小学奥数第35讲-逻辑思路(含解题思路)_第4页
小学奥数第35讲-逻辑思路(含解题思路)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

35、逻辑思路“逻辑思路”,主要是指遵循逻辑的四大基本规律来分析推理的思路。【同一律思路】同一律的形式是:“甲是甲”,或“如果甲,那么甲”。它的基本内容是,在同一思维过程中,同一个概念或同一个思想对象,必须保持前后一致性,亦即保持确定性。这是逻辑推理的一条重要思维规律。运用这一规律来解题,我们把它叫同一律思路。例1某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。乙:甲第三个进去,丙第一个进去。丙:甲第一个进去,乙第三个进去。三人口供每人仅对一半,究竟谁第一个进办公室?分析(用同一律思路推理);这一类问题具有非此即彼的特点。比如甲是否是第一个进办公室只有两种可能:是或非。我们用1表示“是”,0表示“非”,则可把口供列表处理。(1)若甲第一,则依据丙的口供见左表,这个表与甲的口供仅对一半相矛盾;(2)若甲非第一,则依据丙的口供,乙第三个进去,进行列表处理如右表,与“三人口供仅对一半”相符。从而可以判定,丙最先进入办公室。这个问题也可以不列表而用同一律推理。甲的话第一句对,第二句错,则丙第二,乙不是第三,又不是第二,自然乙第一,甲第二,这个结论与丙说的话“半对半错”不符。因此,有甲的第一句错,第二句对。即乙第三个进去,丙不是第二个,自然是第一个。这个结论与乙的话“半对半错”相符:甲不是第三,丙是第一。并且这个结论与丙的话“半对半错”也相符:甲不是第一,乙是第三。在整个思维过程中,我们对三人的话“半对半错”进行了一一验证,直到都符合题目给定的条件为止。例2从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话。一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问你是哪个民族的人?”“匹兹乌图。”那个人回答。外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的。”第三个人回答:“他说他是毛毛族的。”请问,第一个人说的话是什么意思?第二个人和第三个人各属于哪个民族?分析(用同一律思路思考):如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”。如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”。这就是说,第一个人不管是什么民族的,那句话的意思都是:“我是宝宝族的”。根据这一推理,那么第二个人回答“他说他是宝宝族的”这句话是真的,而从条件可知,说真话的是宝宝族人,因此可以判断第二个人是宝宝族人。不管第一个人是什么民族的,根据前面推理已知他说的话是“我是宝宝族的”,而第三个人回答“他说他是毛毛族的”显然是错的,而说假话的是毛毛族人,因此可以断定第三个人是毛毛族人。我们在分析本题时,始终保持了思维前后的一致性,这就是同一律思路的具体运用。【不矛盾律思路】不矛盾律的形式是“甲不是非甲”。它的基本内容是:同一对象,在同一时间内和同一关系下,不能具有两种互相矛盾的性质,它是逻辑推理的又一重要规律,运用不矛盾律来推理、思考某些问题的解答,这种思路我们把它叫做不矛盾律思路。例1有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。”根据他们的回答,智者马上分清了他们,你能分清吗?【充足理由律思路】充足理由律的形式是:“所以有甲,是因为有乙”。它的意思是说,任何正确的思想,一定有它的充足理由;任何思想,只有当它具有充足的理由时,这种思想才能被认为是正确的。在数学中,如果由条正确的,A就是B的正确性的充分理由。因此B的正确性要以A的正确性为基础,而要使A的正确性得到确认,又得为它提出充足的理由,照此类推。这样,当我们要论证某一思想是正确的时候,常常要引证一系列的理由。以此连锁引证下去,直到最后的理由——它的正确性已经确定,并且得到普遍承认的。具体说来有下列三种:(1)明显的事实,它可以为人们所直接感知的;(2)公理;(3)科学的规律。当然在实际进行论证时,并不是总要引证到最后的理由,数学中已经证明过的定理、定律、公式、法则等,都可以作为论证所根据的理由。充足理由律是进行推理的基础。运用充足理由律来思考数学问题,我们把它叫做充足理由律思路。例1200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。分析(运用充足理由律思路思索):题中有两种概念。一是成绩好坏,需要进行量的计算;二是快慢关系推理,先用计算量进行比较推理。抓住“各人跑200米需要的时间”为比较量。并设字母A、B、C、D、E来分别表示张强、李军、王明、赵刚、林林的时间。∵王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒(即C=39.4秒,D=C+0.9)∴D=39.4+0.9=40.3(秒)又∵赵刚比张强快0.1秒(即D+0.1=A)∴A=40.3+0.1=40.4(秒)(传递性)又∵张强比李军快0.2秒(即A=B-0.2)∴B=A+0.2=40.4+0.2=40.6(秒)又∵林林比张强慢3秒(即A=E-0.3)∴E=A+3=40.4+3=43.4(秒)由43.4>40.6>40.4>40.3>39.4即E>B>A>D>C谁是第一、谁是第二、第三、第四、第五名,不就一目了然了吗?本题还可以单纯用快慢关系来进行判断。∵A<B,D>C,D<A,E>A,可得B、E均>A>D>C,∴一、二、三名分别应是C、D、A。但第四、五名仍需计算。由E=A+3秒,B=A+0.2秒,可知E>B,故B是第四,E是第五名。例2填数使下列竖式成立:分析(运用充足理由律思路来探讨这两个式题):第(1)题。抓住乘、除法法则和乘除的互逆关系去思考。∵()()×5=33()∴只要求得33()÷5=()(),就可以得出竖式被乘数了,现可知33()÷5商的十位得6,故被乘数的十位应是6,个位是几呢?再往下看:乘数35的十位数字是3,3与被乘数个位相乘的积的末尾数字要是8,显然只有3与6相乘末尾数字才能是8,所以被乘数是66。找到了被乘数是66以后,其他数字自然就容易找到了。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论