![山西省朔州市怀仁市2021-2022学年高考数学四模试卷含解析_第1页](http://file4.renrendoc.com/view7/M02/25/09/wKhkGWbGfbOAB-7QAAHp1NnknDQ722.jpg)
![山西省朔州市怀仁市2021-2022学年高考数学四模试卷含解析_第2页](http://file4.renrendoc.com/view7/M02/25/09/wKhkGWbGfbOAB-7QAAHp1NnknDQ7222.jpg)
![山西省朔州市怀仁市2021-2022学年高考数学四模试卷含解析_第3页](http://file4.renrendoc.com/view7/M02/25/09/wKhkGWbGfbOAB-7QAAHp1NnknDQ7223.jpg)
![山西省朔州市怀仁市2021-2022学年高考数学四模试卷含解析_第4页](http://file4.renrendoc.com/view7/M02/25/09/wKhkGWbGfbOAB-7QAAHp1NnknDQ7224.jpg)
![山西省朔州市怀仁市2021-2022学年高考数学四模试卷含解析_第5页](http://file4.renrendoc.com/view7/M02/25/09/wKhkGWbGfbOAB-7QAAHp1NnknDQ7225.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中的系数为()A.5 B.10 C.20 D.302.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.23.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.4.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.5.已知,则的大小关系为A. B. C. D.6.下列函数中,在区间上单调递减的是()A. B. C. D.7.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.8.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.9.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.10.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.6411.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.与去年同期相比,2017年第一季度的GDP总量实现了增长.C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D.去年同期河南省的GDP总量不超过4000亿元.12.如果,那么下列不等式成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.14.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.15.若,则________.16.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的长半轴长为,点(为椭圆的离心率)在椭圆上.(1)求椭圆的标准方程;(2)如图,为直线上任一点,过点椭圆上点处的切线为,,切点分别,,直线与直线,分别交于,两点,点,的纵坐标分别为,,求的值.18.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.19.(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为45°的直线,交于点,且的最大值为,求的值.22.(10分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.2.A【解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.3.A【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.4.C【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.5.D【解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6.C【解析】
由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.7.D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.8.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.9.C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.10.B【解析】
根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.11.C【解析】
利用图表中的数据进行分析即可求解.【详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.12.D【解析】
利用函数的单调性、不等式的基本性质即可得出.【详解】∵,∴,,,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.14.【解析】
将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.15.13【解析】
由导函数的应用得:设,,所以,,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【详解】解:设,,所以,,又,所以,即,取得:,又,所以,故,故答案为:13【点睛】本题考查了导函数的应用、二项式定理,属于中档题16..【解析】
计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,,所以可得面,设外接圆的半径为,由正弦定理可得,即,,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)因为点在椭圆上,所以,然后,利用,,得出,进而求解即可(2)设点的坐标为,直线的方程为,直线的方程为,分别联立方程:和,利用韦达定理,再利用,,即可求出的值【详解】(1)由椭圆的长半轴长为,得.因为点在椭圆上,所以.又因为,,所以,所以(舍)或.故椭圆的标准方程为.(2)设点的坐标为,直线的方程为,直线的方程为.据得.据题意,得,得,同理,得,所以.又可求,得,,所以.【点睛】本题考查椭圆标准方程的求解以及联立方程求定值的问题,联立方程求定值的关键在于利用韦达定理进行消参,属于中档题18.(1)(2)【解析】
(1)由数列是等差数列,所以,解得,又由,解得,即可求得数列的通项公式;(2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和.【详解】(1)由题意,数列是等差数列,所以,又,,由,得,所以,解得,所以数列的通项公式为.(2)由(1)得,,,两式相减得,,即.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.19.(1);(2)【解析】
(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题20.(1)B(2)【解析】
(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届高中语文一轮复习学案32 分析思想感情和评价观点态度(含答案)
- 激励高一高二学生的发言稿
- 电力市场下电能质量监测的商业价值分析
- 英语老师实习总结
- 农经站年终工作总结
- 影楼年终工作总结
- 上半年招商引资工作总结
- 社交媒体的心理健康与保护措施研讨
- 电子商务运营策略在教育领域的应用
- 电缆敷设安全协议书范本
- 《中医妇科总论》课件
- 事业单位考试综合应用能力(综合管理类A类)试卷及解答参考
- 《幼儿行为观察与分析案例教程》教学教案
- 煤矿掘进队机电管理制度汇编
- 小学科学教育课程实施方案
- 国家公务员考试(面试)试题及解答参考(2024年)
- 幼学纪事获奖课件
- 代理商的管理制度
- 名著阅读:简答、阅读题(解析版)-2025年中考语文复习专练
- 住院精神疾病患者自杀风险护理
- 浙江省大学生职业生涯规划大赛赛前辅导课件
评论
0/150
提交评论