版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直2.集合,,则()A. B. C. D.3.已知数列为等差数列,为其前项和,,则()A. B. C. D.4.设,是方程的两个不等实数根,记().下列两个命题()①数列的任意一项都是正整数;②数列存在某一项是5的倍数.A.①正确,②错误 B.①错误,②正确C.①②都正确 D.①②都错误5.已知复数是正实数,则实数的值为()A. B. C. D.6.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.367.已知集合,若,则实数的取值范围为()A. B. C. D.8.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.9.在原点附近的部分图象大概是()A. B.C. D.10.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间110,120内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为()A.4 B.3 C.2 D.111.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.12.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.8二、填空题:本题共4小题,每小题5分,共20分。13.如图,直线是曲线在处的切线,则________.14.若函数与函数,在公共点处有共同的切线,则实数的值为______.15.的展开式中的常数项为______.16.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.18.(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.19.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.20.(12分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.21.(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.22.(10分)已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.2.A【解析】
计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.3.B【解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.4.A【解析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.【详解】因为,是方程的两个不等实数根,所以,,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,,所以,,,以此类推,即可知数列的任意一项都是正整数,故①正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故②错误;故选:A.【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.5.C【解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.6.B【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.7.A【解析】
解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.8.B【解析】
因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.9.A【解析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.10.C【解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【详解】①甲同学的成绩折线图具有较好的对称性,最高130分,平均成绩为低于130分,①错误;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C.【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.11.A【解析】
利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.12.A【解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】
求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.14.【解析】
函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.15.160【解析】
先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题.16.【解析】
先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),,,.(2);证明见解析.(3)证明见解析.【解析】
(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1),,,.(2)设,其中,则由题意:,故,即,考虑,可知:,或,若,则考虑,,,则,,但此时,,不满足题意;若,此时,满足题意,,其中为相异正整数.(3)记,则,首先,,设,其中,分别考虑和其他任一元素,由题意可得:也在中,而,,,对于,考虑,,其和大于,故其差,特别的,,,由,且,,以此类推:,,此时,故中存在元素,使得中所有元素均为的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.18.(1),;(2)【解析】
(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由题意得点的直角坐标为,将点代入得则直线的普通方程为.由得,即.故曲线的直角坐标方程为.(2)设直线的参数方程为(为参数),代入得.设对应参数为,对应参数为.则,,且..【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.19.(1);(2)证明见解析.【解析】
(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,,所以.(2)由为方程的两个实根,得,两式相减,可得,因此,令,由,得,则,构造函数.则,所以函数在上单调递增,故,即,可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.20.(1)(2)见解析【解析】
(1)在上单调递减等价于在恒成立,分离参数即可解决.(2)先对求导,化简后根据零点存在性定理判断唯一零点所在区间,构造函数利用基本不等式求解即可.【详解】(1),时,,,∵在上单调递减.∴,.令,,时,;时,,∴在上为减函数,在上为增函数.∴,∴.∴的取值范围为.(2)若,,时,,,令,显然在上为增函数.又,,∴有唯一零点.且,时,,;时,,,∴在上为增函数,在上为减函数.∴.又,∴,,.∴.,.∴当时,.【点睛】此题考查函数定区间上单调,和零点存在性定理等知识点,难点为找到最值后的构造函数求值域,属于较难题目.21.(1)增区间为,减区间为;(2).【解析】
(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论.【详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《奋进中的中国》课件
- 消防喷淋操作培训课件
- 人教版新课标三年级数学上册教案全册教案
- 生产质量月活动方案
- 糖尿病诊断分型
- 2024年护理上半年工作总结
- 2024版房地产买卖合同(含附件)2篇
- 全新转租协议合同范本范本下载
- 妊娠课件教学课件
- 2024年度新能源电动车共同研发协议3篇
- 软件开发人员岗位工资体系
- 船舶垃圾管理计划范本.doc
- 小学生合唱社团记录(共13页)
- 在产品与完工产品成本的核算
- 幼儿园小班音乐《妈妈来抓兔兔》的优秀教案
- 业务学习简报(简笔画)
- 抽油杆和油管尺寸查用表1页
- 宁波地区冬闲田利用现状及对策
- 自动升降柱施工方案(1)
- 新视野大学英语第三版读写教程第二册Unit5
- JG/T 10099 塔式起重机操作使用规程
评论
0/150
提交评论