四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷含解析_第1页
四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷含解析_第2页
四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷含解析_第3页
四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷含解析_第4页
四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省宜宾市叙州区一中2025届高三1月份统一考试(数学试题理)试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,,则集合()A. B. C. D.2.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.33.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件4.为虚数单位,则的虚部为()A. B. C. D.5.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.6.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.987.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%8.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.9.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.11.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为()A. B. C. D.12.若变量,满足,则的最大值为()A.3 B.2 C. D.10二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,已知,则数列的的前项和为__________.14.已知,,,且,则的最小值为___________.15.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.16.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.18.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.19.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.20.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.21.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.22.(10分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.本题考查集合的混合运算,属基础题.2.B【解析】

根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.3.C【解析】

利用数量积的定义可得,即可判断出结论.【详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.4.C【解析】

利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.5.B【解析】

先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.6.C【解析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.7.D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.8.B【解析】

设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.9.A【解析】

由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.三角函数图象变换方法:10.D【解析】

集合.为自然数集,由此能求出结果.【详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.11.B【解析】

由三视图可知,该三棱锥如图,其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B本题考查三视图还原几何体并求其面积;考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.12.D【解析】

画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解.【详解】解:由,得,,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列.,..故答案为:.本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题.14.【解析】

由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.【详解】解:因为,,,且,所以因为,所以,当且仅当时,取等号,所以令,则,令,则,所以函数在上单调递增,所以所以则所求最小值为故答案为:此题考查基本不等式的运用:求最值,注意变形和满足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.15.【解析】

直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【详解】解:的实部与虚部相等,所以,计算得出.故答案为:本题考查复数的乘法运算和复数的概念,属于基础题.16.【解析】

求出点坐标,由于直线与直线垂直,得出直线的斜率为,再由点斜式写出直线的方程.【详解】由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为所以直线的方程为,即故答案为:本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)见解析,最小值为4【解析】

(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得(负根舍去)∴抛物线的方程为(2)设点,由,即,得∴抛物线在点处的切线的方程为,即∵,∴∵点在切线上,①,同理,②综合①、②得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.18.(1)当时,无极值;当时,极小值为;(2).【解析】

(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题,当时,,函数在上单调递增,此时函数无极值;当时,令,得,令,得所以函数在上单调递增,在上单调递减.此时函数有极小值,且极小值为.综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且,令所以,因为,,从而,所以,在上单调递增.又若,则所以在上单调递增,从而,所以时满足题意.若,所以,,在中,令,由(1)的单调性可知,有最小值,从而.所以所以,由零点存在性定理:,使且在上单调递减,在上单调递增.所以当时,.故当,不成立.综上所述:的取值范围为.本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.19.(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.本题考查了简单曲线的极坐标方程,属中档题.20.(1)见解析;(2)【解析】

(1)记,连结,推导出,平面,由此能证明平面平面;(2)推导出,平面,连结,由题意得为的重心,,从而平面平面,进而是与平面所成角,由此能求出与平面所成角的正弦值.【详解】(1)证明:记,连结,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,连结,由题意得为的重心,,,,平面平面平面,∴在平面的射影落在上,是与平面所成角,中,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论