版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津耀华嘉诚国际中学2025届高三4月联考数学试题(详细答案版)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.2.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.3.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A. B. C. D.4.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸 C.4寸 D.5寸5.双曲线的渐近线方程为()A. B.C. D.6.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.7.已知复数,为的共轭复数,则()A. B. C. D.8.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4329.设复数满足为虚数单位),则()A. B. C. D.10.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如果实数满足条件,那么的最大值为()A. B. C. D.12.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.14.若,则_________.15.设,则_____,(的值为______.16.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.18.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.19.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.20.(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.21.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?22.(10分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.2.B【解析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.3.B【解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.4.B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.5.A【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.6.C【解析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.7.C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C本题考查复数的代数形式的四则运算,共轭复数,属于基础题.8.C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.9.B【解析】
易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.10.A【解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.11.B【解析】
解:当直线过点时,最大,故选B12.B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),则,故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.故答案为:此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.14.【解析】
因为,所以.因为,所以,又,所以,所以..15.7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.16.【解析】
设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,得到直线与的交点为几何体外接球的球心,结合三角形的性质,求得球的半径,利用表面积公式,即可求解.【详解】设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,则由球的性质可知,直线与的交点为几何体外接球的球心,取的中点,连接,,由条件得,,连接,因为,从而,连接,则为所得几何体外接球的半径,在直角中,由,,可得,即外接球的半径为,故所得几何体外接球的表面积为.故答案为:.本题主要考查了空间几何体的结构特征,以及多面体的外接球的表面积的计算,其中解答中熟记空间几何体的结构特征,求得外接球的半径是解答的关键,着重考查了空间想象能力与运算求解能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)详见解析【解析】
(1)将原不等式转化为,构造函数,求得的最大值即可;
(2)首先通过求导判断的单调区间,考查两根的取值范围,再构造函数,将问题转化为证明,探究在区间内的最大值即可得证.【详解】解:(1)由,即,即,令,则只需,,令,得,在上单调递增,在上单调递减,,的取值范围是;(2)证明:不妨设,当时,单调递增,当时,单调递减,,当时,,,要证,即证,由在上单调递增,只需证明,由,只需证明,令,,只需证明,易知,由,故,,从而在上单调递增,由,故当时,,故,证毕.本题考查利用导数研究函数单调性,最值等,关键是要对问题进行转化,比如把恒成立问题转化为最值问题,把根的个数问题转化为图像的交点个数,进而转化为证明不等式的问题,属难题.18.(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.【详解】解:(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:设点,,将直线的方程代入,并整理,得.(*)则,因为以线段为直径的圆恰好经过坐标原点O,所以,即.又,于是,解得,经检验知:此时(*)式的,符合题意.所以当时,以线段为直径的圆恰好经过坐标原点O本题考查椭圆方程的求法,椭圆的简单性质,直线与椭圆位置关系的综合应用,考查计算能力以及转化思想的应用,属于中档题.19.(1)分布见解析,期望为;(2).【解析】
(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.20.(1);(2)2【解析】
(1)首先利用对圆C的参数方程(φ为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程.(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得.【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,,得;设,则由解得,,得;所以本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.21.(1)(2)应该购买21件易耗品【解析】
(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托保修合同范本
- 二零二四年度大数据产业发展合同标的及技术支持研究2篇
- 2024年度二手房买卖合同公证哪里可以远程办理
- 道路合同范本2015
- 商场2024年度绿化保洁服务合同
- 2024二手房买卖合同中的交易双方义务及责任协议3篇
- 解除聘用合同通知退休
- 解除劳动合同最暖心句子
- 解除劳动合同补助金申请书
- 冲床购销合同范本
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 教师资格考试高级中学音乐面试试题及解答参考
- DB36T+2036-2024地下病害体三维地质雷达探测技术规程
- 《中国税制讲座》课件
- 2024版成人脑室外引流护理TCNAS 42─2024图文解读学习课件
- 企业出海蓝皮书
- 重大事故隐患判定标准课件
- 医疗器械质量安全风险会商管理制度
- 监控工程验收单-范本模板
- GB/T 21837-2023铁磁性钢丝绳电磁检测方法
- 校长在上级领导检查指导工作会议上的汇报发言
评论
0/150
提交评论