2017年西方经济学计算专题_第1页
2017年西方经济学计算专题_第2页
2017年西方经济学计算专题_第3页
2017年西方经济学计算专题_第4页
2017年西方经济学计算专题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页西方经济学练习题目假定生产函数为,劳动的边际报酬为15元每小时,请计算边际报酬递减率起作用时的劳动水平请计算平均产出最大化时的劳动水平请计算边际成本最小化时的产出水平计算边际成本的最小值计算平均可变成本最小时的产出水平计算平均可变成本的最小值解:(1)根据经济理论可知,边际报酬起作用的点时边际产出达到最大值,所以边际产出的导数为零。MP=dQ/dL=30+12L-0.3L^2dMP/dL=12-0.6L=0所以L=20(2)平均产出达到最大时,其斜率为零,所以AP=Q/L=30+6L-0.1L^2dAP/dL=6-0.2L=0L=30根据MC=W/MP可知,当MP达到最大值时,边际成本达到最小值所以此时L=20,Q=30*20+6*20^2-0.1*20^3=2200根据MC=W/MP可知,当MP达到最大值时,边际成本达到最小值MC=15/(30+12*20-0.3*20^2)=1/2根据AVC=W/AP可知,当平均产出达到最大值时,AVC达到最小,此时L=30所以Q=30*30+6*30^2-0.1*30^3=5400(6)此时AVC=W/AP=15/(30+6*30-0.1*30^2)=1/8给定价格接受的厂商,计算利润最大化时的产出计算此时的利润计算关门点解:(1)在完全竞争厂商中,利润最大化的条件可知:P=MR=MCMC=4Q所以P=4Q,即100=4Q所以Q=25(2)利润profit=P*Q-TC=100*25-(200+2*25^2)=1050(3)关门点就是平均可变成本的最小值时的点,所以AVC=TVC/Q=2Q^2/Q=2Q所以最小值为零时,AVC达到最小值,即关门点为P=0时的生产规模(原点处)7,假定某消费者的效用函数为,其中,为某商品的消费量,为收入。求:(1)该消费者的需求函数;(2)该消费者的反需求函数;(3)当时的消费者剩余。解:(1)由题意可得,商品的边际效用为:货币的边际效用为:于是,根据消费者均衡条件,有:整理得需求函数为由需求函数,可得反需求函数为:(3)由反需求函数,可得消费者剩余为:以p=1/12,q=4代入上式,则有消费者剩余:Cs=1/39,求下列生产函数的生产扩展线(1)(2)解:(1)生产扩展线就是等斜率原则,所以MPL/MPK=W/R所以K=(2W/R)*L,这就是生产扩展线(2)根据最优点为顶点的原则,K=2L,这就是生产扩展线。10,假定某厂商的边际成本函数MC=3Q2-30Q+100,且生产10单位产量时的总成本为1000.求:(1)固定成本的值.总成本函数,总可变成本函数,以及平均成本函数,平均可变成本函数.解:MC=3Q2-30Q+100所以TC(Q)=Q3-15Q2+100Q+M当Q=10时,TC=1000M=500(1)固定成本值:500(2)TC(Q)=Q3-15Q2+100Q+500TVC(Q)=Q3-15Q2+100QAC(Q)=Q2-15Q+100+500/QAVC(Q)=Q2-15Q+10013,已知,三种要素的价格分别为PA=1,PB=2,PC=0.25求该厂商的长期生产函数解:长期生产函数的方程为根据上述方程组中第二个方程可得:A=4B,C=4A,把上述结果代入第一个方程可得:根据第三个方程可得:TC=10B,所以14,已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数。试求:(1)当市场商品价格为P=100时,厂商实现MR=LMC时的产量、平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)当市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。解:(1)根据题意,有:且完全竞争厂商的P=MR,根据已知条件P=100,故有MR=100。由利润最大化的原则MR=LMC,得:3Q^2-24Q+40=100整理得Q^2-8Q-20=0解得Q=10(负值舍去了)又因为平均成本函数所以,以Q=10代入上式,得:平均成本值LAC=102-12×10+40=20最后,利润=TR-LTC=PQ-LTC=(100×10)-(103-12×102+40×10)=1000-200=800因此,当市场价格P=100时,厂商实现MR=LMC时的产量Q=10,平均成本LAC=20,利润为л=800。(2)由已知的LTC函数,可得:令,即有:,解得Q=6且解得Q=6所以Q=6是长期平均成本最小化的解。以Q=6代入LAC(Q),得平均成本的最小值为:LAC=62-12×6+40=4由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。(3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场的长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660-15P,便可以得到市场的长期均衡数量为Q=660-15×4=600。现已求得在市场实现长期均衡时,市场均衡数量Q=600,单个厂商的均衡产量Q=6,于是,行业长期均衡时的厂商数量=600÷6=100(家)。15,已知某完全竞争市场的需求函数为D=6300-400P,短期市场供给函数为SS=3000+150P;单个企业在LAC曲线最低点的价格为6,产量为50;单个企业的成本规模不变。(1)求市场的短期均衡价格和均衡产量;(2)判断(1)中的市场是否同时处于长期均衡,求企业内的厂商数量;(3)如果市场的需求函数变为D`=8000-400P,短期供给函数为SS`=4700+150P,求市场的短期均衡价格和均衡产量;(4)判断(3)中的市场是否同时处于长期均衡,并求行业内的厂商数量;(5)判断该行业属于什么类型;(6)需要新加入多少企业,才能提供(1)到(3)所增加的行业总产量?(7)判断(1)中是否处于规模报酬递增阶段、规模报酬递减阶段还是规模报酬不变阶段?解:(1)根据时常2短期均衡的条件D=SS,有:6300-400P=3000+150P解得P=6以P=6代入市场需求函数,有:Q=6300-400×6=3900或者,以P=6代入短期市场供给函数有:Q=3000+150×6=3900。(2)因为该市场短期均衡时的价格P=6,且由题意可知,单个企业在LAV曲线最低点的价格也为6,所以,由此可以判断该市场同时又处于长期均衡。因为由于(1)可知市场长期均衡时的数量是Q=3900,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出长期均衡时行业内厂商的数量为:3900÷50=78(家)(3)根据市场短期均衡条件D`=SS`,有:8000-400P=4700+150P解得P=6以P=6代入市场需求函数,有:Q=8000-400×6=5600或者,以P=6代入市场短期供给函数,有:Q=4700+150×6=5600所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡数量分别为P=6,Q=5600。(4)及(2)中的分析类似,在市场需求函数和供给函数变化了后,该市场短期均衡的价格P=6,且由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判断该市场的之一短期均衡同时又是长期均衡。因为由(3)可知,供求函数变化了后的市场长期均衡时的产量Q=5600,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为:5600÷50=112(家)。(5)、由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的价格是不变的,均为P=6,而且,单个企业在LAC曲线最低点的价格也是6,于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析及计算结果的部分内容如图1-30所示(见书P66)。(6)由(1)、(2)可知,(1)时的厂商数量为78家;由(3)、(4)可知,(3)时的厂商数量为112家。因为,由(1)到(3)所增加的厂商数量为:112-78=34(家)。16,假设某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为求市场的短期供给函数若,求市场的短期均衡价格及产量假定政府对每一单位的商品征1.6元的销售税,那么市场均衡产出为多少?消费者及厂商各负担多少税收?求消费者及厂商的消费者剩余及生产者剩余的变化。解:(1),单个厂商的需求曲线为P=MC所以即市场总供给是单个企业供给的总和,即即,或者市场短期均衡时,需求等于供给420-30P=50P-300所以P=9,Q=150假定政府征收销售税,即供给曲线向上平移1.6个单位,则新的供给曲线变为将供给曲线及联立求解,可得P=10,Q=120,此时消费者承担的负担为(10-9)=1,厂商承担的负担为0.6(4)P1098.4120150Q消费者剩余的变化=0.5*(120+150)*1=135生产者剩余的变化=0.5*(120+150)*0.6=8117,已知某垄断厂商的短期成本函数为,反需求函数为P=150-3.25Q求:该垄断厂商的短期均衡产量及均衡价格。解:因为且由得出MR=150-6.5Q根据利润最大化的原则MR=SMC解得Q=20(负值舍去)以Q=20代人反需求函数,得P=150-3.25Q=85所以均衡产量为20均衡价格为8519,已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场上出售,他的成本函数为,两个市场的需求函数分别为,。求:(1)当该厂商实行三级价格歧视时,他追求利润最大化前提下的两市场各自的销售量、价格以及厂商的总利润。(2)当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润。(3)比较(1)和(2)的结果。解:(1)由第一个市场的需求函数Q1=12-0.1P1可知,该市场的反需求函数为P1=120-10Q1,边际收益函数为MR1=120-20Q1。同理,由第二个市场的需求函数Q2=20-0.4P2可知,该市场的反需求函数为P2=50-2.5Q2,边际收益函数为MR2=50-5Q2。而且,市场需求函数Q=Q1+Q2=(12-0.1P)+(20-0.4P)=32-0.5P,且市场反需求函数为P=64-2Q,市场的边际收益函数为MR=64-4Q。此外,厂商生产的边际成本函数。该厂商实行三级价格歧视时利润最大化的原则可以写为MR1=MR2=MC。于是:关于第一个市场:根据MR1=MC,有:120-20Q1=2Q+40即22Q1+2Q2=80关于第二个市场:根据MR2=MC,有:50-5Q2=2Q+40即2Q1+7Q2=10由以上关于Q1、Q2的两个方程可得,厂商在两个市场上的销售量分别为:P1=84,P2=49。在实行三级价格歧视的时候,厂商的总利润为:л=(TR1+TR2)-TC=P1Q1+P2Q2-(Q1+Q2)2-40(Q1+Q2)=84×3.6+49×0.4-42-40×4=146(2)当该厂商在两个上实行统一的价格时,根据利润最大化的原则即该统一市场的MR=MC有:64-4Q=2Q+40解得Q=4以Q=4代入市场反需求函数P=64-2Q,得:P=56于是,厂商的利润为:л=P*Q-TC=(56×4)-(42+40×4)=48所以,当该垄断厂商在两个市场上实行统一的价格时,他追求利润最大化的销售量为Q=4,价格为P=56,总的利润为л=48。(3)比较以上(1)和(2)的结果,可以清楚地看到,将该垄断厂商实行三级价格歧视和在两个市场实行统一作价的两种做法相比较,他在两个市场制定不同的价格实行三级价格歧视时所获得的利润大于在两个市场实行统一定价时所获得的利润(因为146>48)。这一结果表明进行三级价格歧视要比不这样做更为有利可图。22,假定某经济社会的消费函数c=30+0.8yd,净税收即总税收减去政府转移支付后的金额tn=50,投资i=60,政府购买性支出g=50,净出口即出口减进口以后的余额为nx=50-0.05y,求:(1)均衡收入;(2)在均衡收入水平上净出口余额;(3)投资乘数;(4)投资从60增至70时的均衡收入和净出口余额;(5)当净出口从nx=50-0.05y变为nx=40-0.05y时的均衡收入和净出口余额。解:(1)可支配收入:yd=y-tn=y-50消费:c=30+0.8(y-50)=30+0.8y-40=0.8y-10均衡收入:y=c+i+g+nx=0.8y-10+60+50+50-0.05y=0.75y+150解得y=eq\f(150,0.25)=600,即均衡收入为600。(2)净出口余额:nx=50-0.05y=50-0.05×600=20(3)投资乘数ki=eq\f(1,1-0.8+0.05)=4。(4)投资从60增加到70时,有y=c+i+g+nx=0.8y-10+70+50+50-0.05y=0.75y+160解得y=eq\f(160,0.25)=640,即均衡收入为640。净出口余额:nx=50-0.05y=50-0.05×640=50-32=18(5)净出口函数从nx=50-0.05y变为nx=40-0.05y时的均衡收入:y=c+i+g+nx=0.8y-10+60+50+40-0.05y=0.75y+140解得y=eq\f(140,0.25)=560,即均衡收入为560。净出口余额:nx=40-0.05y=40-0.05×560=40-28=1223,假设一个只有家庭和企业的两部门经济中,消费c=100+0.8y,投资i=150-6r,实际货币供给m=150,货币需求L=0.2y-4r(单位均为亿美元)。(1)求IS和LM曲线;(2)求产品市场和货币市场同时均衡时的利率和收入。(3)假设潜在产出为1000,请对比此时和(2)的结果,请问这时有什么经济现象。(4)如果名义货币供给为M=100,求总需求函数。(5)如果名义货币供给为M=100,且潜在产出为950,政府增加投资g=20,请问短期产出、利率和价格会有什么变化?长期会有什么变化?若按照乘数理论计算,此时的收入应该为多少?请分析这两种收入的差异及原因(6)如果潜在产出为950,名义货币供给增为M=120,请问短期产出、利率和价格会有什么变化?长期会有什么变化?(7)对比(2)、(5)和(6),得出什么经济意义(8)若假设货币需求为L=0.20y,货币供给量为200亿美元,c=90亿美元+0.8yd,t=50亿美元,i=140亿美元-5r,g=50亿美元。当g增加20亿美元,是否存在“挤出效应”?解:(1)IS曲线的方程为Y=C+IY=C+I=100+0.8y+150-6r所以Y=1250–30rLM曲线为L=M,即0.2y-4r=150所以Y=750+20r(2)联立IS曲线和LM曲线,求解可得r=10,Y=950此时实际产出为950,潜在产出为1000,则存在失业如果名义货币供给为100,此时IS曲线为:Y=1250–30rLM曲线为:0.2y-4r=100/P联立上述方程可得:如果政府增加投资g=20,此时Y=C+I+GY=100+0.8Y+150-6r+20所以此时的IS曲线为:Y=1350–30rLM曲线为:Y=750+20r联立上述IS曲线和LM曲线,可得:短期,利率上升,产出增加,价格水平不变,此时r=12,Y=990,长期而言,AD曲线向右移动,此时可以求出新的AD曲线为:,带Y=950进入方程,可得长期而言,价格上涨,利率上升,产出不变,此时,Y=950,按照乘数理论可得:所以按照乘数理论,但是此时国民收入的真实增长为所以实际增长低于乘数理论中的收入增长,造成这种现象的原因在于挤出效应(6)此时短期中利率下降,收入上升,价格水平不变。长期中利率不变,收入不变,价格水平上升IS曲线为:Y=1250–30rLM曲线为:,联立上述方程可得,短期中:长期中:总需求曲线变为,将Y=950带入总需求方程可得:(7)对比上述结果可以看出,短期中货币政策或者财政政策能够使得产出增加,政策是有效的,但是长期中,产出并不能增长,所以长期政策无效。(8)由L=0.20y,MS=200和L=MS可知LM曲线为0.20y=200,即y=1000(2)说明LM曲线处于古典区域,故说明政府支出增加时,只会提高利率和完全挤占私人投资,而不会增加国民收入,可见这是一种及古典情况相吻合的“完全挤占”。26,假设一经济中有如下关系:c=100+0.8yd(消费)i=50(投资)g=200(政府支出)tr=62.5(政府转移支付)(单位均为10亿美元)t=0.25(税率)(1)求均衡收入。(2)求预算盈余BS。(3)若投资增加到i=100,预算盈余有何变化?为什么会发生这一变化?(4)若充分就业收入y=1200,当投资分别为50和100时,充分就业预算盈余BS为多少?(5)若投资i=50,政府购买g=250,而充分就业收入仍为1200,试问充分就业预算盈余为多少?解:(1)由模型可解得均衡收入为y=eq\f(100+0.8tr+i+g,0.2+0.8t)=eq\f(100+0.8×62.5+50+200,0.2+0.8×0.25)=1000(2)当均衡收入y=1000时,预算盈余为BS=ty-g-tr=0.25×1000-200-62.5=-12.5(3)当i增加到100时,均衡收入为y=eq\f(a+b·tr+i+g,1-b(1-t))=eq\f(100+0.8×62.5+100+200,1-0.8(1-0.25))=eq\f(450,0.4)=1125这时预算盈余BS=0.25×1125-200-62.5=18.75。预算盈余之所以会从-12.5变为18.75,是因为国民收入增加了,从而税收增加了。(4)若充分就业收入y*=1200,当i=50时,充分就业预算盈余为BS*=ty*-g-tr=300-200-62.5=37.5当i=100时,充分就业预算盈余BS*没有变化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论