高层建筑与钢结构外文文献翻译_第1页
高层建筑与钢结构外文文献翻译_第2页
高层建筑与钢结构外文文献翻译_第3页
高层建筑与钢结构外文文献翻译_第4页
高层建筑与钢结构外文文献翻译_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高层建筑与钢结构外文文献翻译(含:英文原文及中文译文)文献出处:StructuralEngineerJournaloftheInstitutionofStructuralEngineer,2014,92,pp:26-29.英文原文TallingbuildingandSteelconstructionCollins

MarkAlthoughtherehavebeenmanyadvancementsinbuildingconstructiontechnologyingeneral.Spectacularachievementshavebeenmadeinthedesignandconstructionofultrahigh-risebuildings.Theearlydevelopmentofhigh-risebuildingsbeganwithstructuralsteelfraing.Reinforcedconcreteandstressed-skintubesystemshavesincebeeneconomicallyandcompetitivelyusedinanumberofstructuresforbothresidentialandcommercialpurposes.Thehigh-risebuildingsrangingfrom50to110storiesthatarebeingbuiltallovertheUnitedStatesaretheresultofinnovationsanddevelopmentofnewstructuralsystems.Greaterheightentailsincreasedcolumnandbeamsizestomakebuildingsmorerigidsothatunderwindloadtheywillnotswaybeyondanacceptablelimit.Excessivelateralswaymaycauseseriousrecurringdamagetopartitions,ceilings.andotherarchitecturaldetails.Inaddition,excessiveswaymaycausediscomforttotheoccupantsofthebuildingbecausetheir

perceptionofsuchmotion.Structuralsystemsofreinforcedconcrete,aswellassteel,takefulladvantageofinherentpotentialstiffnessofthetotalbuildingandthereforerequireadditionalstiffeningtolimitthesway.Inasteelstructure,forexample,theeconomycanbedefinedintermsofthetotalaveragequantityofsteelpersquarefootoffloorareaofthebuilding.CurveAinFig.1representstheaverageunitweightofaconventionalframewithincreasingnumbersofstories.CurveBrepresentstheaveragesteelweightiftheframeisprotectedfromalllateralloads.Thegapbetweentheupperboundaryandthelowerboundaryrepresentsthepremiumforheightforthetraditionalcolumn-and-beamframe.Structuralengineershavedevelopedstructuralsystemswithaviewtoeliminatingthispremium.Systemsinsteel.Tallbuildingsinsteeldevelopedasaresultofseveraltypesofstructuralinnovations.Theinnovationshavebeenappliedtotheconstructionofbothofficeandapartmentbuildings.Framewithrigidbelttrusses.Inordertotietheexteriorcolumnsofaframestructuretotheinteriorverticaltrusses,asystemofrigidbelttrussesatmid-heightandatthetopofthebuildingmaybeused.AgoodexampleofthissystemistheFirstWisconsinBankBuilding(1974)inMilwaukee.Framedtube.Themaximumefficiencyofthetotalstructureofatallbuilding,forbothstrengthandstiffness,toresistwindloadcanbeachievedonlyifallcolumnelementcanbeconnectedtoeachotherinsuchawaythattheentirebuildingactsasahollowtubeorrigidboxinprojectingoutoftheground.Thisparticularstructuralsystemwasprobablyusedforthefirsttimeinthe43-storyreinforcedconcreteDeWittChestnutApartmentBuildinginChicago.Themostsignificantuseofthissystemisinthetwinstructuralsteeltowersofthe110-storyWorldTradeCenterbuildinginNewYorkColumn-diagonaltrusstube.Theexteriorcolumnsofabuildingcanbespacedreasonablyfarapartandyetbemadetoworktogetherasatubebyconnectingthemwithdiagonalmembersinterestingatthecentrelineofthecolumnsandbeams.ThissimpleyetextremelyefficientsystemwasusedforthefirsttimeontheJohnHancockCentreinChicago,usingasmuchsteelasisnormallyneededforatraditional40-storybuilding.Bundledtube.Withthecontinuingneedforlargerandtallerbuildings,theframedtubeorthecolumn-diagonaltrusstubemaybeusedinabundledformtocreatelargertubeenvelopeswhilemaintaininghighefficiency.The110-storySearsRoebuckHeadquartersBuildinginChicagohasninetube,bundledatthebaseofthebuildinginthreerows.Someoftheseindividualtubesterminateatdifferentheightsofthebuilding,demonstratingtheunlimitedarchitecturalpossibilitiesofthislateststructuralconcept.TheSearstower,ataheightof1450ft(442m),istheworld’stallestbuilding.Stressed-skintubesystem.Thetubestructuralsystemwasdevelopedforimprovingtheresistancetolateralforces(windandearthquake)andthecontrolofdrift(lateralbuildingmovement)inhigh-risebuilding.Thestressed-skintubetakesthetubesystemastepfurther.Thedevelopmentofthestressed-skintubeutilizesthefaçadeofthebuildingasastructuralelementwhichactswiththeframedtube,thusprovidinganefficientwayofresistinglateralloadsinhigh-risebuildings,andresultingincost-effectivecolumn-freeinteriorspacewithahighratioofnettogrossfloorarea.Becauseofthecontributionofthestressed-skinfaçade,theframedmembersofthetuberequirelessmass,andarethuslighterandlessexpensive.Allthetypicalcolumnsandspandrelbeamsarestandardrolledshapes,minimizingtheuseandcostofspecialbuilt-upmembers.Thedepthrequirementfortheperimeterspandrelbeamsisalsoreduced,andtheneedforupsetbeamsabovefloors,whichwouldencroachonvaluablespace,isminimized.Thestructuralsystemhasbeenusedonthe54-storyOneSystemsinconcrete.Whiletallbuildingsconstructedofsteelhadanearlystart,developmentoftallbuildingsofreinforcedconcreteprogressedatafastenoughratetoprovideacompetitivechanllengetostructuralsteelsystemsforbothofficeandapartmentbuildings.Framedtube.Asdiscussedabove,thefirstframedtubeconceptfortallbuildingswasusedforthe43-storyDeWittChestnutApartmentBuilding.Inthisbuilding,exteriorcolumnswerespacedat5.5ft(1.68m)centers,andinteriorcolumnswereusedasneededtosupportthe8-in.-thick(20-m)flat-plateconcreteslabs.Tubeintube.Anothersysteminreinforcedconcreteforofficebuildingscombinesthetraditionalshearwallconstructionwithanexteriorframedtube.Thesystemconsistsofanouterframedtubeofverycloselyspacedcolumnsandaninteriorrigidshearwalltubeenclosingthecentralservicearea.Thesystem(Fig.2),knownasthetube-in-tubesystem,madeitpossibletodesigntheworld’spresenttallest(714ftor218m)lightweightconcretebuilding(the52-storyOneShellPlazaBuildinginHouston)fortheunitpriceofatraditionalshearwallstructureofonly35stories.Systemscombiningbothconcreteandsteelhavealsobeendeveloped,anexamleofwhichisthecompositesystemdevelopedbyskidmore,Owings&Merrilinwhichanexteriorcloselyspacedframedtubeinconcreteenvelopsaninteriorsteelframing,therebycombiningtheadvantagesofbothreinforcedconcreteandstructuralsteelsystems.The52-storyOneShellSquareBuildinginNewOrleansisbasedonthissystem.Steelconstructionreferstoabroadrangeofbuildingconstructioninwhichsteelplaystheleadingrole.Moststeelconstructionconsistsoflarge-scalebuildingsorengineeringworks,withthesteelgenerallyintheformofbeams,girders,bars,plates,andothermembersshapedthroughthehot-rolledprocess.Despitetheincreaseduseofothermaterials,steelconstructionremainedamajoroutletforthesteelindustriesoftheU.S,U.K,U.S.S.R,Japan,WestGerman,France,andothersteelproducersinthe1970s.Earlyhistory.ThehistoryofsteelconstructionbeginsparadoxicallyseveraldecadesbeforetheintroductionoftheBessemerandtheSiemens-Martin(openj-hearth)processesmadeitpossibletoproducesteelinquantitiessufficientforstructureuse.Manyofproblemsofsteelconstructionwerestudiedearlierinconnectionwithironconstruction,whichbeganwiththeCoalbrookdaleBridge,builtincastironovertheSevernRiverinEnglandin1777.Thisandsubsequentironbridgework,inadditiontotheconstructionofsteamboilersandironshiphulls,spurredthedevelopmentoftechniquesforfabricating,designing,andjioning.Theadvantagesofironovermasonrylayinthemuchsmalleramountsofmaterialrequired.Thetrussform,basedontheresistanceofthetriangletodeformation,longusedintimber,wastranslatedeffectivelyintoiron,withcastironbeingusedforcompressionmembers-i.e,thosebearingtheweightofdirectloading-andwroughtironbeingusedfortensionmembers-i.e,thosebearingthepullofsuspendedloading.Thetechniqueforpassingiron,heatedtotheplasticstate,betweenrollstoformflatandroundedbars,wasdevelopedasearlyas1800;by1819angleironswererolled;andin1849thefirstIbeams,17.7feet(5.4m)long,werefabricatedasroofgirdersforaParisrailroadstation.TwoyearslaterJosephPaxtonofEnglandbuilttheCrystalPalacefortheLondonExpositionof1851.Heissaidtohaveconceivedtheideaofcageconstruction-usingrelativelyslenderironbeamsasaskeletonfortheglasswallsofalarge,openstructure.ResistancetowindforcesintheIn1853thefirstmetalfloorbeamswererolledfortheCooperUnionBuildinginNewYork.Inthelightoftheprincipalmarketdemandforironbeamsatthetime,itisnotsurprisingthattheCooperUnionbeamscloselyresembledrailroadrails.ThedevelopmentoftheBessemerandSiemens-Martinprocessesinthe1850sand1860ssuddenlyopenthewaytotheuseofsteelforstructuralpurpose.Strongerthanironinbothtensionandcompression,thenewlyavailablemetalwasseizedonbyimaginativeengineers,notablybythoseinvolvedinbuildingthegreatnumberofheavyrailroadbridgesthenindemandinBritain,Europe,andtheU.S.AnotableexamplewastheEadsBridge,alsoknownastheSt.LouisBridge,inSt.Louis(1867-1874),inwhichtubularsteelribswereusedtoformarcheswithaspanofmorethan500ft(152.5m).InBritain,theFirthofForthcantileverbridge(1883-90)employedtubularstruts,some12ft(3.66m)indiameterand350ft(107m)long.Suchbridgesandotherstructureswereimportantinleadingtothedevelopmentandenforcementofstandardsandcodificationofpermissibledesignstresses.Thelackofadequatetheoreticalknowledge,andevenofanadequatebasisfortheoreticalstudies,limitedthevalueofstressanalysisduringtheearlyyearsofthe20thcentury,asiccasionallyfailures,suchasthatofacantileverbridgeinQuebecin1907,revealed.Butfailureswererareinthemetal-skeletonofficebuildings;thesimplicityoftheirdesignprovedhighlypracticalevenintheabsenceofsophisticatedanalysistechniques.Throughoutthefirstthirdofthecentury,ordinarycarbonsteel,withoutanyspecialalloystrengtheningorhardening,wasuniversallyused.Thepossibilitiesinherentinmetalconstructionforhigh-risebuildingwasdemonstratedtotheworldbytheParisExpositionof1889.forwhichAlexandre-GustaveEiffel,aleadingFrench

bridgeengineer,erectedanopenworkmetaltower300m(984ft)high.Notonlywastheheight-morethandoublethatoftheGreatPyramid-remarkable,butthespeedoferectionandlowcostwereevenmoreso,asmallcrewcompletedtheworkinafewmonths.Thefirstskyscrapers.Meantime,intheUnitedStatesanotherimportantdevelopmentwastakingplace.In1884-85Maj.WilliamLeBaronJenney,aChicagoengineer,haddesignedtheHomeInsuranceBuilding,tenstorieshigh,withametalskeleton.Jenney’sbeamswereofBessemersteel,thoughhiscolumnswerecastiron.Castironlintelssupportingmasonryoverwindowopeningswere,inturn,supportedonthecastironcolumns.Soildmasonrycourtandpartywallsprovidedlateralsupportagainstwindloading.Withinadecadethesametypeofconstructionhadbeenusedinmorethan30officebuildingsinThoughthenewconstructionformwastoremaincentredalmostentirelyinAmericaforseveraldecade,itsimpactonthesteelindustrywasworldwide.Bythelastyearsofthe19thcentury,thebasicstructuralshapes-Ibeamsupto20in.(0.508m)indepthandZandTshapesoflesserproportionswerereadilyavailable,tocombinewithplatesofseveralwidthsandthicknessestomakeefficientmembersofanyrequiredsizeandstrength.In1885theheavieststructuralshapeproducedthroughhot-rollingweighedlessthan100pounds(45kilograms)perfoot;decadebydecadethisfigureroseuntilinthe1960sitexceeded700pounds(320kilograms)perfoot.CoincidentwiththeintroductionofstructuralsteelcametheintroductionoftheOtiselectricelevatorin1889.Thedemonstrationofasafepassengerelevator,togetherwiththatofasafeandeconomicalsteelconstructionmethod,sentbuildingheightssoaring.InNewYorkthe286-ft(87.2-m)FlatironBuildingof1902wassurpassedin1904bythe375-ft(115-m)TimesBuilding(renamedtheAlliedChemicalBuilding),the468-ft(143-m)CityInvestingCompanyBuildinginWallStreet,the612-ft(187-m)SingerBuilding(1908),the700-ft(214-m)MetropolitanTower(1909)and,in1913,the780-ft(232-m)WoolworthBuilding.Therapidincreaseinheightandtheheight-to-widthratiobroughtproblems.Tolimitstreetcongestion,buildingsetbackdesignwasprescribed.Onthetechnicalside,theproblemoflateral

supportwasstudied.Adiagonalbracingsystem,suchasthatusedintheEiffelTower,wasnotarchitecturallydesirableinofficesrelyingonsunlightforillumination.Theanswerwasfoundingreaterrelianceonthebendingresistanceofcertainindividualbeamsandcolumnsstrategicallydesignedintotheskeletnframe,togetherwithahighdegreeofrigiditysoughtatthejunctionofthebeamsandcolumns.Withtoday’smoderninteriorlightingsystems,however,diagonalbracingagainstwindloadshasreturned;onenotableexampleistheJohnHancockCenterinWorldWarIbroughtaninterruptiontotheboominwhathadcometobecalledskyscrapers(theoriginofthewordisuncertain),butinthe1920sNewYorksawaresumptionoftheheightrace,culminatingintheEmpireStateBuildinginthe1931.TheEmpireState’s102stories(1,250ft.[381m])weretokeepitestablishedasthehightestbuildingintheworldforthenext40years.Itsspeedoftheerectiondemonstratedhowthoroughlythenewconstructiontechniquehadbeenmastered.AdepotacrossthebayatTheworldwidedepressionofthe1930sandWorldWarIIprovidedanotherinterruptiontosteelconstructiondevelopment,butatthesametimetheintroductionofweldingtoreplacerivetingprovidedanimportantadvance.Joiningofsteelpartsbymetalareweldinghadbeensuccessfullyachievedbytheendofthe19thcenturyandwasusedinemergencyshiprepairsduringWorldWarI,butitsapplicationtoconstructionwaslimiteduntilafterWorldWarII.Anotheradvanceinthesameareahadbeentheintroductionofhigh-strengthboltstoreplacerivetsinfieldconnections.SincethecloseofWorldWarII,researchinEurope,theU.S.,andJapanhasgreatlyextendedknowledgeofthebehaviorofdifferenttypesofstructuralsteelundervaryingstresses,includingthoseexceedingtheyieldpoint,makingpossiblemorerefinedandsystematicanalysis.Thisinturnhasledtotheadoptionofmoreliberaldesigncodesinmostcountries,moreimaginativedesignmadepossiblebyso-calledplasticdesign?Theintroductionofthecomputerbyshort-cuttingtediouspaperwork,madefurtheradvancesandsavingspossible.中文译文高层结构与钢结构作者:Collins

Mark近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。最初的高层建筑设计是从钢结构的设计开始的。钢筋混凝土和受力外包钢筒系统运用起来是比较经济的系统,被有效地运用于大批的民用建筑和商业建筑中。50层到100层的建筑被定义为超高层建筑。而这种建筑在美国的广泛应用是由于新的结构系统的发展和创新。更高的高度需要增加柱和梁的尺寸,以使建筑物更加坚硬,以便在风荷载下它们不会超出可接受的极限。过度的侧向摇摆可能会对隔板,天花板造成严重的反复损坏。和其他建筑细节。此外,过度摇摆可能会导致建筑物的居住者感到不适,因为他们对这种运动的感知。钢筋混凝土和钢结构系统充分利用了整个建筑物固有的潜在刚度,因此需要额外的加强来限制摆动。例如,在钢结构中,经济可以用建筑物每平方英尺建筑面积的平均钢材总量来定义。图1中的曲线A表示随着故事数量增加的传统框架的平均单位重量。曲线B表示框架受到所有侧向载荷的保护时的平均钢重量。上边界和下边界之间的差距代表了传统的柱-梁框架的高度溢价。结构工程师已经开发了结构系统以消除这种溢价。钢铁系统。钢铁中的高层建筑是由于几种结构创新而发展起来的。这些创新已被应用于办公楼和公寓楼的建设。带有刚性带桁架的框架。为了将框架结构的外部柱与内部垂直桁架相连,可以使用在建筑物中部和建筑物顶部的刚性带桁架系统。这个系统的一个很好的例子是密尔沃基的第一威斯康辛银行大楼(1974)。框架管。只有当所有的柱式构件可以相互连接时,才能达到抵抗风荷载的高层建筑的整体结构的最大效率,以使整个建筑物起中空管的作用,或者坚硬的箱子伸出地面。这种特殊的结构系统可能首次在芝加哥的43层钢筋混凝土DeWittChestnut公寓大楼中使用。这个系统最重要的用途是纽约110层的世界贸易中心大楼的双层结构钢塔柱对角桁架管。建筑物的外部柱子可以相距很远,但是可以通过将它们与在柱和梁的中心线处有趣的对角线成员连接在一起而制成管。这个简单却非常高效的系统首次在芝加哥的约翰汉考克中心使用,使用的钢材与传统40层建筑通常所需的一样多。捆绑管。随着对更大和更高建筑物的持续需求,框架管或柱对角桁架管可以以捆绑形式使用,以在保持高效率的同时形成更大的管封套。芝加哥的西尔斯罗巴克总部大楼110层有9根管子,捆绑在建筑物底部三排。其中一些独立管终止于建筑物的不同高度,展示了这种最新结构概念的无限建筑可能性。西尔斯大厦高1450英尺(442米),是世界上最高的建筑。应力皮肤管系统。为了提高高层建筑的抗侧向力(风和地震)和控制漂移(侧向建筑物运动),开发了管道结构系统。应力表皮管使管系更进一步。应力蒙皮管的开发利用建筑物的外墙作为与框架管作用的结构元件,从而提供抵抗高层建筑物中的侧向载荷的有效方式,并且导致经济高效的无柱内部净面积与建筑面积之比高的空间。由于应力皮肤立面的贡献,管的框架构件需要较少的质量,因此较轻且较便宜。所有典型的立柱和拱肩梁都是标准的卷形,最大限度地减少了特殊组合构件的使用和成本。外围伸缩梁的深度要求也降低了,并且需要高于地面的镦粗的梁,这会侵占有价值的空间,因此被最小化。该结构系统已用于匹兹堡54层的梅隆银行中心。混凝土系统。虽然钢铁建造的高层建筑起步较早,但钢筋混凝土高层建筑的发展速度非常快,为办公楼和公寓建筑的结构钢系统提供了竞争激烈的挑战。框架管。如上所述,高层建筑的第一个框架管理概念被用于43层DeWittChestnut公寓大楼。在这座建筑物中,外部柱子的间距为5.5英尺(1.68米),并且根据需要使用内部柱子来支撑8英寸。(20米)平板混凝土板。管内管。办公大楼钢筋混凝土的另一个系统将传统的剪力墙结构与外部框架管相结合。该系统由一个非常紧密间隔的柱的外框架管和一个围绕中央服务区的内部刚性剪力墙管组成。该系统(图2)被称为管中管系统,可以为该装置设计世界上目前最高的(714英尺或218米)轻质混凝土建筑(休斯顿的52层OneShellPlazaBuilding)只有35层的传统剪力墙结构的价格。同时开发了混凝土和钢结合的系统,其中一个实例是Skidmore开发的复合系统Owings&Merril,其中混凝土外部紧密间隔的框架管包裹着内部钢框架,从而结合了钢筋混凝土和结构钢系统。新奥尔良的52层的OneShellSquare建筑基于这个系统。钢结构是指以钢铁为主导的广泛建筑结构。大多数钢铁建筑由大型建筑或工程工程组成,钢材通常采用横梁,桁材,棒材,板材和其他通过热轧工艺成型的构件。尽管其他材料的使用增加,钢铁建筑仍然是美国,英国,美国,日本,西德,法国和其他钢铁生产商在上世纪70年代钢铁行业的主要出口。早期历史。在引进Bessemer和西门子-马丁(openj-hearth)工艺之前的几十年,钢结构的历史开始出现矛盾,这使得生产足够数量的钢材成为可能。早些时候对钢结构的许多问题进行了研究,涉及铁建设,该建设始于1777年在英格兰的塞文河上铸铁铸造的Coalbrookdale桥。这个和随后的铁桥工程除了建造蒸汽锅炉和铁船体,促进了制造,设计和制动技术的发展。铁在砖石上的优势在于所需材料的数量少得多。基于长期用于木材的三角形对变形的阻力,桁架形式被有效地转化为铁,其中铸铁被用于压缩构件-即承受直接负荷重量的构件-和锻铁被用于受拉构件-即承受悬吊载荷拉力的构件。早在1800年就开发了在轧辊之间加热到塑性状态以形成扁平圆棒的技术,1819年开发了角铁,1849年,第一根长17.7英尺(5.4米)的梁被制作成巴黎火车站的屋顶梁。两年后,英格兰的约瑟夫·帕克斯顿为1851年的伦敦博览会建造了水晶宫。据说他设想了笼子建造的想法-使用相对细长的铁梁作为大型开放结构玻璃墙的骨架。水晶宫殿内的风力抵抗由对角线铁棒提供。两个特征在金属建筑史上特别重要;首先是使用网格梁,这是一种小型桁架,这种桁架首先在木桥和其他结构中开发,并由Paxton翻译成金属;其次,通过在热的情况下插入的铆钉连接锻铁拉伸构件和铸铁压缩构件。1853年,第一块金属地板梁在纽约库珀联合大厦轧制。鉴于当时对铁梁的主要市场需求,库柏联盟的梁非常类似于铁轨,这并不奇怪。Bessemer和西门子-马丁工艺在1850年代和1860年代的发展突然开启了钢结构用途的发展道路。在紧张和压缩两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论