版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省三明建宁县联考中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°° B.255° C.155° D.150°2.下列实数中,在2和3之间的是()A. B. C. D.3.的相反数是()A. B.- C. D.4.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c5.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A. B. C. D.6.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒7.如果,那么代数式的值是()A.6 B.2 C.-2 D.-68.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)9.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是10.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°二、填空题(本大题共6个小题,每小题3分,共18分)11.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.12.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.13.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.14.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.15.因式分解:4x2y﹣9y3=_____.16.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.三、解答题(共8题,共72分)17.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.18.(8分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8_____甲与A地的距离(km)520乙与A地的距离(km)012(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.19.(8分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.20.(8分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).21.(8分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为时,四边形PBEC是矩形;②当AP的值为时,四边形PBEC是菱形.22.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.23.(12分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.24.某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.2、C【解析】
分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;
B、1<π−2<2,故本选项不符合题意;
C、2<<3,故本选项符合题意;
D、3<<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.3、C【解析】
根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.4、D【解析】分析:根据图示,可得:c<b<0<a,,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.5、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解:∵EF∥AB,∴△CEF∽△CAB,∴,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.6、B【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.7、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.8、A【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.9、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数10、D【解析】
根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、60°.【解析】
先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.12、.【解析】
设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;【详解】设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,作A1M⊥FA交FA的延长线于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根据对称性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六边形GHIJKI:S六边形ABCDEF=()2=,故答案为:.【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.13、15°、30°、60°、120°、150°、165°【解析】分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB时,∠ECB=∠B=60°.③如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.14、,.【解析】试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.试题解析:如图:当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,当点B的移动距离为时,四边形ABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.15、y(2x+3y)(2x-3y)【解析】
直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16、1.【解析】
根据三角形的性质求解即可。【详解】解:在Rt△ABC中,D为AB的中点,根据直角三角形斜边的中线等于斜边的一半可得:AD=BD=CD,因为D为AB的中点,BE//DC,所以DF是△ABE的中位线,BE=2DF=12所以DF==6,设CD=x,由CF=CD,则DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【点睛】本题主要考查三角形基本概念,综合运用三角形的知识可得答案。三、解答题(共8题,共72分)17、(2)证明见解析;(2)k2=2,k2=2.【解析】
(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.18、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】
(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;(Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.【详解】(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8时,甲离开A的距离是10×1.8=18(km),当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km),故填写下表:(Ⅱ)由题意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根据题意,得,当0≤x≤1.5时,由10x=12,得x=1.2,当1.5<x≤2时,由﹣30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.19、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ与OQ的比值的最大值为;(3)S△PBA=3.【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.【详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+2),Q(n,﹣n+2),则PE=﹣m2+m+2,QD=﹣n+2.又∵=y.∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ与OQ的比值的最大值为.(3)如图2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此时PB过点(2,4).设直线PB解析式为,y=kx+2.把点(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直线PB解析式为,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.当x=5时,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).过P作PH⊥cy轴于点H.则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.S△OAB=OA•OB=×2×2=7.S△BHP=PH•BH=×5×3=35.∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.20、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:横梁EF应为44cm.根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.21、证明见解析;(2)①9;②12.5.【解析】
(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)①若四边形PBEC是矩形,则∠APC=90°,求得AP即可;②若四边形PBEC是菱形,则CP=PB,求得AP即可.【详解】∵点D是BC的中点,∴BD=CD.∵DE=PD,∴四边形PBEC是平行四边形;(2)①当∠APC=90°时,四边形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴当AP的值为9时,四边形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质.22、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全民国家安全教育日的法律考试答题活动总结
- 化工工厂后勤服务全面总结
- 软件行业工程师工作体会
- 急诊护士守护生命安全
- KTV前台服务心得体会
- 书籍《外婆的道歉信》的读书笔记感想
- 2023年企业主要负责人安全培训考试题带答案(考试直接用)
- 2023-2024年项目部治理人员安全培训考试题及完整答案【名校卷】
- 2023年员工三级安全培训考试题(预热题)
- 2023-2024年项目部安全培训考试题原创题
- 2024版智能硬件产品研发合作协议3篇
- 甘肃省兰州市第一中学2023-2024学年高一上学期期末考试 物理 含解析
- 草地调查规划学知到智慧树章节测试课后答案2024年秋东北农业大学
- 2024年矿产资源开发咨询服务合同
- 上海市2024-2025学年高一语文下学期期末试题含解析
- 国家电网招聘之财务会计类题库含完整答案(必刷)
- 建筑物拆除的拆除工厂考核试卷
- 广东省深圳市2023-2024学年高二上学期期末测试英语试卷(含答案)
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 人教版一年级数学2024版上册期末测评(提优卷一)(含答案)
- 医疗护理员理论知识考核试题题库及答案
评论
0/150
提交评论