版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.2.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.3.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.4.定义,已知函数,,则函数的最小值为()A. B. C. D.5.已知全集,则集合的子集个数为()A. B. C. D.6.已知,则()A. B. C. D.7.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.8.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.9.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1 B. C. D.10.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-211.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.2912.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.集合,,则_____.14.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________15.展开式中的系数为_______________.16.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.18.(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.19.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:20.(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.21.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.22.(10分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.2.D【解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.3.A【解析】
根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.4.A【解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.5.C【解析】
先求B.再求,求得则子集个数可求【详解】由题=,则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题6.D【解析】
根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.7.D【解析】
由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【详解】,.故选:D.【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.8.D【解析】
根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,
当,若为增函数,则①,
当,若为增函数,必有在上恒成立,
变形可得:,
又由,可得在上单调递减,则,
若在上恒成立,则有②,
若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③
联立①②③可得:.
故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.9.C【解析】
对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,,故令,得当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.10.C【解析】
利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.11.D【解析】
由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.12.D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.14.【解析】
根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.【详解】如图所示,设,由与相似,可得,解得,再由与相似,可得,解得,由三角形的面积公式,可得的面积为.故答案为:.【点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题.15.【解析】
把按照二项式定理展开,可得的展开式中的系数.【详解】解:,故它的展开式中的系数为,故答案为:.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.【解析】
根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)证明见解析,或【解析】
(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,,,,表示出直线,的方程,利用表示出,,即可求定点的坐标.【详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上的点到直线距离的最小值;(2)设,,,,,,直线,的方程为分别为,,由两条直线都经过点点得,为方程的两根,,直线的方程为,,,,,共线.又,,,解,,点,是直线上的动点,时,,时,,,或.【点睛】本题考查抛物线的方程的求法,考查直线方程的求法,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.(1)(2)详见解析【解析】
(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,,则.设的前n项和为.则,相减可得【点睛】数列的通项与前项和的关系式,我们常利用这个关系式实现与之间的相互转化.数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.19.(1);(2)见解析.【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.20.(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】
(1)当时,,求得其导函数,,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性;(3)当时,,,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,,所以,,所以函数的图象在处的切线方程为,即;(2)由已知得,,令,得,所以当时,,当时,,所以在上是减函数,在上是增函数;(3)当时,,,由(2)得在上单调递减,在单调递增,所以,且时,,当时,,,所以当方程有两个不相等的实数根,不妨设,且有,,构造函数,则,当时,所以,在上单调递减,且,,由,在上单调递增,.所以.【点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.21.(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【解析】
(1)将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文工作计划范文
- 学生个人档案里的自我鉴定6篇
- 2024年规范化EPC总包协议格式
- 寒假日记大全(8篇)
- 有关公司年会策划方案范文汇编9篇
- 课外活动总结集锦15篇
- 《局外人》读书笔记12篇
- 中班元旦活动方案(15篇)
- 汽车实习报告范文汇编六篇
- 军训个人心得体会汇编15篇
- 2024年有限合伙股权代持
- 广东珠海市驾车冲撞行人案件安全防范专题培训
- 花城版一年级上册音乐 第3课 《国旗国旗真美丽》(教案)
- 2024年四川高校对口招生考试中职英语试卷真题(含答案)
- 2024油气管道无人机巡检作业标准
- 陕西省陕西师大附中2025届高一物理第一学期期末统考模拟试题含解析
- 重大(2023)版信息科技五年级上册教学设计
- 工业循环水处理行业市场调研分析报告
- 2025公司集团蛇年新春年会游园(灵蛇舞动共创辉煌主题)活动策划方案-31P
- 2024年高考历史必修部分重点必考知识点总结(经典版)
- 《计算机视觉》教学课件-第08章1-神经网络和深度学习1
评论
0/150
提交评论