第一章++集合与常用逻辑用语知识点- 高一上学期数学人教A版(2019)必修第一册_第1页
第一章++集合与常用逻辑用语知识点- 高一上学期数学人教A版(2019)必修第一册_第2页
第一章++集合与常用逻辑用语知识点- 高一上学期数学人教A版(2019)必修第一册_第3页
第一章++集合与常用逻辑用语知识点- 高一上学期数学人教A版(2019)必修第一册_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合中元素的三个特性:(1)确定性:(2)互异性:(3)无序性:3.集合的符号表示通常用大写的字母,,,…表示集合,用小写的字母,,表示集合中的元素.4.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合与集合相等记作.5.元素与集合之间的关系(1)属于:如果是集合中的元素,就说属于集合,记作,读作属于.(2)不属于:如果不是集合中的元素,就说不属于集合,记作,读作不属于.6.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式的解组成的集合.7.常用数集及其记法(1)正整数集:全体正整数组成的集合叫做正整数集,记作或.(2)自然数集:全体非负整数组成的集合叫做自然数集,记作.(3)整数集:全体整数组成的集合叫做整数集,记作.(4)有理数集:全体有理数组成的集合叫做有理数集,记作.(5)实数集:全体实数组成的集合叫做实数集,记作.8.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为太平洋,大西洋,印度洋,北冰洋,把“方程的所有实数根”组成的集合表示为.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为,其中是集合中的元素代表,则表示集合中的元素所具有的共同特征.例如,不等式的解集可以表示为.1.2集合间的基本关系1.子集一般地,对于两个集合,,如果集合中任意一个元素都是集合中的元素,我们就说这两个集合有包含关系,称集合为集合的子集,记为或()读作集合包含于集合(或集合包含集合).关于子集有下面的两个性质:(1)反身性:;(2)传递性:如果,且,那么.2.真子集如果集合,但存在元素,且,我们称集合是集合的真子集,记为(或),读作集合真包含于集合(或集合真包含集合).集合是集合的真子集可用图表示如右.3.集合的相等如果集合,且,此时集合与集合的元素是一样的,我们就称集合与集合相等,记为.集合与集合相等可用图表示如右.4.空集我们把不含任何元素的集合叫做空集,记为.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即(1)(是任意一个集合);(2)().1.3集合的运算1.并集自然语言:一般地,由所有属于集合或属于集合的元素组成的集合,称为集合与的并集,记作(读作“并”).符号语言:.图形语言:理解:或包括三种情况:且;且;且.并集的性质:(1);(2);(3);(4);(5),;(6).2.交集自然语言:一般地,由属于集合且属于集合的所有元素组成的集合,称为与的交集,记作(读作“交”).符号语言:.图形语言:理解:当与没有公共元素时,不能说与没有交集,只能说与的交集是.交集的性质:(1);(2);(3);(4);(5),;(6).3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作.(2)补集的概念自然语言:对于一个集合,由属于全集且不属于集合的所有元素组成的集合称为集合相对于全集的补集,记为.符号语言:图形语言:1.4充分条件与必要条件1.充分条件与必要条件一般地,“若,则”为真命题,是指由通过推理可以得出.这时,我们就说,由可推出,记作,并且说是的充分条件,是的必要条件.在生活中,是成立的必要条件也可以说成是:(表示不成立),其实,这与是等价的.但是,在数学中,我们宁愿采用第一种说法.|如果“若,则”为假命题,那么由推不出,记作.此时,我们就说不是的充分条件,不是的必要条件.2.充要条件如果“若,则”和它的逆命题“若则”均是真命题,即既有,又有就记作.此时,我们就说是的充分必要条件,简称为充要条件.显然,如果是的充要条件,那么也是的充要条件.概括地说,如果,那么与互为充要条件.“是的充要条件”,也说成“等价于”或“当且仅当”等.1.5全称量词与存在量词1.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对中的任意一个,有成立”可用符号简记为:,,读作“对任意属于,有成立”.(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.存在量词命题“存在中的元素,使成立”可用符号简记为:,,读作“存在中的元素,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论