版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江西省南昌市心远中学中考押题数学预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣22.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC3.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135° B.120° C.60° D.45°4.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55° B.60° C.65° D.70°5.已知,则的值是A.60 B.64 C.66 D.726.下列关于x的方程中一定没有实数根的是()A. B. C. D.7.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B. C. D.8.下列各数中,无理数是()A.0 B. C. D.π9.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109 B.2.8×108 C.2.8×109 D.2.8×101010.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.11.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.712.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.14.若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为__________.15.点A(-2,1)在第_______象限.16.若关于x的分式方程的解为非负数,则a的取值范围是_____.17.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留18.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)20.(6分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本21.(6分)如图,已知在中,,是的平分线.(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由.22.(8分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.23.(8分)(1)问题发现如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.(1)①求的值;②求∠ACD的度数.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,AB=4,BC=12,P是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.24.(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.25.(10分)计算:÷–+2018026.(12分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?27.(12分)先化简,再求值:,其中
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.2、D【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.3、B【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.4、C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.5、A【解析】
将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.6、B【解析】
根据根的判别式的概念,求出△的正负即可解题.【详解】解:A.x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,B.,△=36-144=-1080,∴原方程没有实数根,C.,,△=10,∴原方程有两个不相等的实数根,D.,△=m2+80,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.7、C【解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故选:C.8、D【解析】
利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.9、D【解析】
根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.10、A【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.11、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.12、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3<d<7【解析】
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围.【详解】∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.14、1.【解析】
根据方程的系数结合根的判别式即可得出△=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.【详解】∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案为1.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.15、二【解析】
根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.17、【解析】
直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.故答案为6π.【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.18、=【解析】
探究规律后,写出第n个等式即可求解.【详解】解:…则第n个等式为故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、215.6米.【解析】
过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据Rt△ACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在Rt△ACM中,∵,∴AM=CM=200米,又∵CD=300米,所以米,在Rt△BDN中,∠BDF=60°,BN=200米∴米,∴米即A,B两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.20、(1);(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:p≤q,进而得出x的取值范围;(3)①利用顶点式求出函数最值得出答案;②利用二次函数的增减性得出答案即可.【详解】(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵当x时,y随x的增加而增加.又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.21、(1)见解析;(2)与相切,理由见解析.【解析】
(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
(2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.【详解】(1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,②作直线,与相交于点,③以为圆心,为半径作圆,如图即为所作;(2)与相切,理由如下:连接OD,为半径,,是等腰三角形,,平分,,,,,,,为半径,与相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.22、证明见解析【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.23、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】
(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到ABP∽△CAD,根据相似三角形的性质得到结论;过A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根据勾股定理得到根据相似三角形的性质得到,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP与△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)过A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴过A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【点睛】本题考查了等腰直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子病历行业研究报告
- 电子电力系统课程设计
- 电子汽车营销策略研究报告
- 育苗代加工合同
- 电子时钟的课程设计
- 电子支付课程设计
- 电子技术有什么课程设计
- 航空公司劳动合同(2篇)
- 电子封装综合课程设计
- 电子商城系统课程设计
- 辽宁省沈阳市沈阳市郊联体2024-2025学年高二上学期11月期中英语试题 含解析
- 《员工培训方案》课件
- 2024年贵州省贵阳修文县事业单位招聘133人历年管理单位遴选500模拟题附带答案详解
- 读书分享《非暴力沟通》课件(图文)
- 2024-2030年中国家禽饲养行业发展前景预测和投融资分析报告
- 2024-2030年中国净菜加工行业市场营销模式及投资规模分析报告
- 2024-2025学年广东省佛山市九年级(上)期中数学试卷(含答案)
- 湖南省长沙市雅礼教育集团2024-2025学年高一上学期期中考试数学试题 含解析
- 第二章 空气、物质的构成(选拔卷)(原卷版)
- 云南省昆明市昆十中教育集团2024-2025学年七年级上学期期中测试地理试卷(无答案)
- 2024-2025学年度广东省春季高考英语模拟试卷(解析版) - 副本
评论
0/150
提交评论