高考数学大一轮复习精讲精练(新高考地区)7.6空间几何体中垂直的判定与性质(精练)(原卷版+解析)_第1页
高考数学大一轮复习精讲精练(新高考地区)7.6空间几何体中垂直的判定与性质(精练)(原卷版+解析)_第2页
高考数学大一轮复习精讲精练(新高考地区)7.6空间几何体中垂直的判定与性质(精练)(原卷版+解析)_第3页
高考数学大一轮复习精讲精练(新高考地区)7.6空间几何体中垂直的判定与性质(精练)(原卷版+解析)_第4页
高考数学大一轮复习精讲精练(新高考地区)7.6空间几何体中垂直的判定与性质(精练)(原卷版+解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.6空间几何体中垂直的判定和性质【题型解读】【题型一线面垂直的判定】1.(2023·陕西安康·高三期末)在如图所示的几何体中,四边形ABCD是正方形,平面ABCD⊥平面PAB,E,F分别是线段AD,PB的中点,.证明:(1)平面PDC;(2)PB⊥平面DEF.2.(2023·江苏南通市高三模拟)在平行四边形中过点作的垂线交的延长线于点,.连接交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面.3.(2023·陕西高三模拟)如图,在直三棱柱中,为的中点,证明:平面4.(2023·海原县高三模拟)如图,在三棱台中,侧棱平面点在棱上,证明:平面5.(2023·山西·太原五中高一阶段练习)如图,点是以为直径的圆上的动点(异于,),已知,,平面,四边形为平行四边形,求证:平面【题型二面面垂直的判定】1.(2023·全国高三模拟)如图,正方形ABED的边长为1,AC=BC,平面ABED⊥平面ABC,直线CE与平面ABC所成角的正切值为.(1)若G,F分别是EC,BD的中点,求证:平面ABC;(2)求证:平面BCD⊥平面ACD.2.(2023·河北衡水中学高三模拟)在四棱锥中,底面是正方形,若,证明:平面平面3.(2023·安徽·合肥市第六中学高一期中)如图,正三棱柱中,,,,分别是棱,的中点,在侧棱上,且,求证:平面平面;4.(2023·全国高三模拟)已知正三角形的边长为,点、分别是边、上的点,且满足(如图1),将沿折起到的位置(如图2),且使与底面成角,连接,,求证:平面⊥平面【题型三线线垂直的判定】1.(2023·江西高三模拟)如图,是边长为的等边三角形,E,F分别是的中点,G是的重心,将沿折起,使点A到达点P的位置,点P在平面的射影为点G.证明:2.(2023·重庆八中高三阶段练习)在四棱锥中,底面.证明:3.(2023·全国·高三专题练习)如图,在侧棱垂直于底面的三棱柱中,,是线段的中点,是线段靠近点的四等分点,点在线段上,求证:4.(2023·全国·高三专题练习)如图,在三棱柱中,,,四边形是菱形,,,点是中点,点是上靠近点的三等分点.证明:;【题型四垂直中的探究性问题】1.(2023·山东·模拟预测)如图,在直三棱柱中,,点分别为和的中点.,)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由2.(2023·福建·三明一中模拟预测)如图,在长方体中,分别为的中点,是上一个动点,且.(1)当时,求证:平面平面;(2)是否存在,使得?若存在,请求出的值;若不存在,请说明理由.3.(2023·广东佛山市高三模拟)如图,在棱长为的正方体中,、分别为棱和的中点,交于,试在棱上找一点,使平面,并证明你的结论;4.(2023·云南昆明市高三模拟)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.7.6空间几何体中垂直的判定和性质【题型解读】【题型一线面垂直的判定】1.(2023·陕西安康·高三期末)在如图所示的几何体中,四边形ABCD是正方形,平面ABCD⊥平面PAB,E,F分别是线段AD,PB的中点,.证明:(1)平面PDC;(2)PB⊥平面DEF.答案:(1)证明见解析(2)证明见解析【解析】(1)取PC的中点M,连接DM,MF.∵M,F分别是PC,PB的中点,∴,.∵E为DA的中点,四边形ABCD为正方形,∴,,∴,,∴四边形DEFM为平行四边形.∴,∵平面PDC,平面PDC.∴平面PDC.(2)∵四边形ABCD为正方形,∴.又平面ABCD⊥平面PAB,平面平面,平面ABCD,∴AD⊥平面PAB.∵平面PAB,∴.连接AF,∵,F为PB中点,∴.又,AD,平面DEF,∴PB⊥平面DEF.2.(2023·江苏南通市高三模拟)在平行四边形中过点作的垂线交的延长线于点,.连接交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面.答案:证明见解析【解析】证明:图1中,在中,所以.所以也是直角三角形,,在图2中,所以平面.3.(2023·陕西高三模拟)如图,在直三棱柱中,为的中点,证明:平面答案:证明见解析【解析】∵为的中点,∴,∵直三棱柱中,面面,面,面面,∴面,又面,即,由题设易知:,故,又,∴,则,又,∴平面.4.(2023·海原县高三模拟)如图,在三棱台中,侧棱平面点在棱上,证明:平面答案:证明见解析【解析】因为,所以,又因为平面,平面,所以,又,所以平面,所以,又因为,,所以,所以,又,所以平面;5.(2023·山西·太原五中高一阶段练习)如图,点是以为直径的圆上的动点(异于,),已知,,平面,四边形为平行四边形,求证:平面答案:证明见解析【解析】因为四边形为平行四边形,所以.因为平面,所以平面,所以.因为是以为直径的圆上的圆周角,所以,因为,,平面,所以平面.【题型二面面垂直的判定】1.(2023·全国高三模拟)如图,正方形ABED的边长为1,AC=BC,平面ABED⊥平面ABC,直线CE与平面ABC所成角的正切值为.(1)若G,F分别是EC,BD的中点,求证:平面ABC;(2)求证:平面BCD⊥平面ACD.答案:(1)证明见解析;(2)证明见解析.【解析】(1)如图,连接AE,因F是正方形ABED对角线BD的中点,则F是AE的中点,而G是CE的中点,则,又平面,平面,所以平面.(2)在正方形中,,因平面ABED⊥平面ABC,平面平面,平面,则平面,即是与平面所成的角,有,解得,即有,则,即,而,则有平面,又平面,于是得,因,平面,则平面,平面,所以平面平面.2.(2023·河北衡水中学高三模拟)在四棱锥中,底面是正方形,若,证明:平面平面答案:证明见解析【解析】取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.3.(2023·安徽·合肥市第六中学高一期中)如图,正三棱柱中,,,,分别是棱,的中点,在侧棱上,且,求证:平面平面;答案:证明见解析【解析】∵在正三棱柱中,平面,平面,∴.∵是棱的中点,为正三角形,∴.∵,∴平面.∵平面∴.又∵,,,∴,,∴,∴,∴,∴,∴,∴.又∵,∴平面,∵平面,∴平面平面.4.(2023·全国高三模拟)已知正三角形的边长为,点、分别是边、上的点,且满足(如图1),将沿折起到的位置(如图2),且使与底面成角,连接,,求证:平面⊥平面答案:证明见解析【解析】折叠前,在图1中,,,,由余弦定理可得,所以,,则,折叠后,在图2中,对应地有,,,平面,平面,因此,平面⊥平面;【题型三线线垂直的判定】1.(2023·江西高三模拟)如图,是边长为的等边三角形,E,F分别是的中点,G是的重心,将沿折起,使点A到达点P的位置,点P在平面的射影为点G.证明:答案:证明见解析;【解析】连接,因是等边三角形,是的中点,是的重心,所以在上,,又点在平面的射影为点,即平面,平面,所以,又,所以平面,又平面,所以.2.(2023·重庆八中高三阶段练习)在四棱锥中,底面.证明:答案:证明见解析;【解析】证明:在四边形中,作于,于,因为,所以四边形为等腰梯形,所以,故,,所以,所以,因为平面,平面,所以,又,所以平面,又因为平面,所以;3.(2023·全国·高三专题练习)如图,在侧棱垂直于底面的三棱柱中,,是线段的中点,是线段靠近点的四等分点,点在线段上,求证:答案:证明见解析【解析】由题意,在直三棱柱中,,不妨设,则,由余弦定理可得,因为,可得,又由是线段的中点,所以,且,因为平面,平面,所以,又因为,且平面,所以平面,因为平面,所以,在直角中,,因为是线段靠近点的四等分点,可得,所以,可得,又由且平面,所以平面,因为平面,所以.4.(2023·全国·高三专题练习)如图,在三棱柱中,,,四边形是菱形,,,点是中点,点是上靠近点的三等分点.证明:;答案:证明见解析【详解】证明:取中点,连结,在中,,,∴,在菱形中,由可知为等边三角形,∴,又∵,,,∴,,∴.【题型四垂直中的探究性问题】1.(2023·山东·模拟预测)如图,在直三棱柱中,,点分别为和的中点.,)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由答案:存在点满足题意,且,证明详见解析【解析】存在点满足题意,且.证明如下:取的中点为,连接.则,所以平面.因为是的中点,所以.在直三棱柱中,平面平面,且交线为,所以平面,所以.在平面内,,,所以,从而可得.又因为,所以平面.因为平面,所以平面平面.2.(2023·福建·三明一中模拟预测)如图,在长方体中,分别为的中点,是上一个动点,且.(1)当时,求证:平面平面;(2)是否存在,使得?若存在,请求出的值;若不存在,请说明理由.答案:(1)证明见解析;(2)答案见解析.【解析】(1)当时,为中点,因为是的中点,所以,则四边形是平行四边形,所以.又平面平面,所以平面.因为分别是中点,所以.因为平面平面,所以平面.因为平面平面,所以平面平面.(2)如图,连接与,因为平面平面,所以.若又平面,且,所以平面.因为平面,所以.在矩形中,由,得,所以.又,所以,则,即.3.(2023·广东佛山市高三模拟)如图,在棱长为的正方体中,、分别为棱和的中点,交于,试在棱上找一点,使平面,并证明你的结论;答案:中点;见解析【解析】在棱上取中点,连、.平面,以.在正方形中,因为、分别为、的中点,又因为平面,所以,所以,平面4.(2023·云南昆明市高三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论