版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年辽宁省瓦房店高级中学高三年级第三次联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.2.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.3.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为()A.1 B.2 C.4 D.85.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.06.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.57.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.8.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.9.已知集合,若,则实数的取值范围为()A. B. C. D.10.已知实数满足不等式组,则的最小值为()A. B. C. D.11.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.12.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数(R,)满足,且的最小值等于,则ω的值为___________.14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.15.已知数列是各项均为正数的等比数列,若,则的最小值为________.16.函数在区间(-∞,1)上递增,则实数a的取值范围是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.18.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.19.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.20.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.21.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.22.(10分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.2.A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.3.C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.4.C【解析】
设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积.【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,∵直线经过抛物线的焦点,,是与的交点,又轴,∴可设点坐标为,代入,解得,又∵点在准线上,设过点的的垂线与交于点,,∴.故应选C.本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值.本题难度一般.5.B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.本题考查向量的几何意义,考查投影公式的应用,是基础题.6.D【解析】
由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.7.A【解析】
由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.8.A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.9.A【解析】
解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.10.B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.11.C【解析】
设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.12.B【解析】
利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.【详解】由题,,因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1本题考查正弦型函数的对称性的应用,考查三角函数的化简.14.【解析】
不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.15.40【解析】
设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【详解】设等比数列的公比为,,,等比数列的各项为正数,,,当且仅当,即时,取得最小值.故答案为:.本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.16.【解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析.【解析】
(1)将转化为对任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出.【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,,故在上单调递增,又,所以当时,,不符合题意;当时,令得,当时,;当时,,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,,所以,当时,;当时,,所以在单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,,所以,使得,当时,;当时,,即在上单调递减,在上单调递增,且所以,即,所以,即.本题主要考查利用导数法求函数的最值及恒成立问题处理方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题.18.(1)见解析;(2)【解析】
(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解得,即点到平面的距离为故答案为:.考查线面平行的判定和利用等体积法求距离的方法,是中档题.19.(1)(2)【解析】
(1)化简得到,分类解不等式得到答案.(2)的最大值,,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.20.(1)见解析;(2)见解析【解析】
(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证.【详解】(1)∵,分别是,的中点∴∵平面,平面∴平面.(2)∵为正三角形,且D是的中点∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.21.(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为减函数,所以的最小值为,则,不妨令(a),,则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)为减函数,所以(a)的最大值为,则的最大值为.本题考查利用导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年校园小卖部租赁合同及新品引进协议3篇
- 二零二五年度青少年心理辅导服务合同3篇
- 二零二五版建筑玻璃及装饰材料购销合同2篇
- 2024版软件开发项目居间合同
- 2025别墅装修室内外照明设计与安装合同3篇
- 2025年度林业资源综合管理与技术服务承包合同样本3篇
- 二零二四年份版权转让与授权合同3篇
- 2025年度体育场馆设施抵押融资合同范本3篇
- 2025年度数据中心冷却系统安装合同范本6篇
- 二零二五版城市综合体项目施工监管服务合同3篇
- 新型电力系统简介演示
- 特种设备行业团队建设工作方案
- 眼内炎患者护理查房课件
- 肯德基经营策略分析报告总结
- 买卖合同签订和履行风险控制
- 中央空调现场施工技术总结(附图)
- 水质-浊度的测定原始记录
- 数字美的智慧工业白皮书-2023.09
- -安规知识培训
- 2021-2022学年四川省成都市武侯区部编版四年级上册期末考试语文试卷(解析版)
- 污水处理厂设备安装施工方案
评论
0/150
提交评论