2025年高考数学一轮复习课时作业-充要条件与量词【含解析】_第1页
2025年高考数学一轮复习课时作业-充要条件与量词【含解析】_第2页
2025年高考数学一轮复习课时作业-充要条件与量词【含解析】_第3页
2025年高考数学一轮复习课时作业-充要条件与量词【含解析】_第4页
2025年高考数学一轮复习课时作业-充要条件与量词【含解析】_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE2025年高考数学一轮复习课时作业-充要条件与量词【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(2024·沈阳模拟)数学符号的使用对数学的发展影响深远,“=”作为等号使用首次出现在《砺智石》一书中,表达等式关系,英国数学家首次使用“>”和“<”,便于不等式的表示,则命题p:∀x,y∈R,(x+y)3>x3+y3的否定为()A.∀x,y∈R,(x+y)3<x3+y3B.∃x,y∈R,(x+y)3>x3+y3C.∃x,y∈R,(x+y)3<x3+y3D.∃x,y∈R,(x+y)3≤x3+y32.(5分)荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.(5分)(2023·江西九校联考)已知p:∀x∈[3,4),x2-a≥0,则p成立的一个充分不必要条件可以是()A.a<9 B.a>9 C.a<16 D.a>164.(5分)(2024·信阳模拟)已知条件p:log2(x+1)<2,条件q:x2-(2a+1)x+a2+a≤0,若p是q的必要不充分条件,则实数a的取值范围为()A.(-∞,2) B.(-1,+∞) C.(-1,2) D.[2,8]【5.(5分)(多选题)对任意实数a,b,c,给出下列命题,其中是真命题的有()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件6.(5分)(多选题)(2024·黔西模拟)下列命题不正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.不等式x2-4x+5<0的解集为⌀C.x<1是(x-1)(x+2)<0的充分不必要条件D.∀x∈R,x2=7.(5分)(2024·西安模拟)若命题p:“∀x∈R,x2-2x-2≥0”,则“¬p”为.

8.(5分)已知命题p:∀x∈[0,1],a≥ex;命题q:∃x∈R,使得x2+4x+a=0.若命题p为真命题,则实数a的取值范围为;若命题p,q都为真命题,则实数a的取值范围是.

9.(5分)命题“∃x∈R,(a2-4)x2+(a+2)x-1≥0”为假命题,则实数a的取值范围为.

10.(10分)(2024·石家庄模拟)已知集合A={x|-3≤x≤4},B={x|1-m≤x≤3m-2,m>1},是否存在实数m,使得x∈A是x∈B成立的?

(1)是否存在实数m,使得x∈A是x∈B成立的充要条件?若存在,求出实数m的值;若不存在,请说明理由;(2)请在①充分不必要条件,②必要不充分条件这两个条件中任选一个补充在上面的问题中横线部分.若问题中的实数m存在,求出m的取值范围;若问题中的m不存在,请说明理由.11.(10分)(2024·徐州模拟)已知命题p:∃x∈R,ax2+2x-1=0为假命题.设实数a的取值集合为A,设集合B={x|3m<x<m+2},若,求实数m的取值范围.

在①“x∈A”是“x∈B”的必要不充分条件;②“x∈B”是“x∈∁RA”的充分条件;③B∩∁RA=∅这三个条件中任选一个,补充到本题的横线处,并按照你的选择求解问题.【能力提升练】12.(5分)(多选题)“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件有()A.0≤a<1 B.0<a<1 C.-1≤a<1 D.-1<a<213.(5分)(2024·杭州模拟)已知集合A={x|y=ln(2x2-x-6)},B={x|9x+m-27>0},若“x∈A”是“x∈B”的必要不充分条件,则实数m的取值范围为.

14.(10分)已知函数f(x)=x2-x+1x-1(x≥2),g(x)=a(1)若∃x∈[2,+∞),使f(x)=m成立,求实数m的取值范围;(2)若∀x1∈[2,+∞),∃x2∈[2,+∞),使得f(x1)=g(x2),求实数a的取值范围.2025年高考数学一轮复习课时作业-充要条件与量词【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(2024·沈阳模拟)数学符号的使用对数学的发展影响深远,“=”作为等号使用首次出现在《砺智石》一书中,表达等式关系,英国数学家首次使用“>”和“<”,便于不等式的表示,则命题p:∀x,y∈R,(x+y)3>x3+y3的否定为()A.∀x,y∈R,(x+y)3<x3+y3B.∃x,y∈R,(x+y)3>x3+y3C.∃x,y∈R,(x+y)3<x3+y3D.∃x,y∈R,(x+y)3≤x3+y3【解析】选D.因为全称量词命题的否定为存在量词命题,所以命题p:∀x,y∈R,(x+y)3>x3+y3的否定为∃x,y∈R,(x+y)3≤x3+y3.2.(5分)荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】选C.“不积跬步,无以至千里”说明能“至千里”必须“积跬步”,而“积跬步”不一定能“至千里”.故“积跬步”是“至千里”的必要不充分条件.3.(5分)(2023·江西九校联考)已知p:∀x∈[3,4),x2-a≥0,则p成立的一个充分不必要条件可以是()A.a<9 B.a>9 C.a<16 D.a>16【解析】选A.a≤x2在区间[3,4)上恒成立,所以a≤9,所以结合选项可知p成立的一个充分不必要条件可以是a<9.4.(5分)(2024·信阳模拟)已知条件p:log2(x+1)<2,条件q:x2-(2a+1)x+a2+a≤0,若p是q的必要不充分条件,则实数a的取值范围为()A.(-∞,2) B.(-1,+∞) C.(-1,2) D.[2,8]【解析】选C.由log2(x+1)<2,得-1<x<3,所以p:-1<x<3,由x2-(2a+1)x+a2+a≤0,得a≤x≤a+1,所以q:a≤x≤a+1,因为p是q的必要不充分条件,所以{x|a≤x≤a+1}能推出{x|-1<x<3},则a>解得-1<a<2.5.(5分)(多选题)对任意实数a,b,c,给出下列命题,其中是真命题的有()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件【解析】选CD.对于A,当a=b时,ac=bc成立,当ac=bc,c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A不是真命题.对于B,当a=-1,b=-2时,a>b,a2<b2,当a=-2,b=1时,a2>b2,a<b,所以“a>b”是“a2>b2”的既不充分也不必要条件,故B不是真命题.对于C,当a<3时,一定有a<5成立,当a<5时,a<3不一定成立,所以“a<5”是“a<3”的必要条件,故C是真命题.对于D,易知“a+5是无理数”是“a是无理数”的充要条件,故D是真命题.6.(5分)(多选题)(2024·黔西模拟)下列命题不正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.不等式x2-4x+5<0的解集为⌀C.x<1是(x-1)(x+2)<0的充分不必要条件D.∀x∈R,x2=【解析】选ACD.对A,若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0,故A不正确;对B,因为x2-4x+5<0,令y=x2-4x+5,则Δ=42-4×5=-4<0,又因为y=x2-4x+5的图象开口向上,所以不等式x2-4x+5<0的解集为⌀,故B正确;对C,由(x-1)(x+2)<0,解得-2<x<1,设A=(-∞,1),B=(-2,1),则B⫋A,故x<1是(x-1)(x+2)<0的必要不充分条件,故C不正确;对D,当x=-1时,(-1)7.(5分)(2024·西安模拟)若命题p:“∀x∈R,x2-2x-2≥0”,则“¬p”为.

【解析】全称量词命题的否定步骤为“改量词,否结论”,所以命题p:“∀x∈R,x2-2x-2≥0”的否定为¬p:∃x∈R,x2-2x-2<0.答案:∃x∈R,x2-2x-2<08.(5分)已知命题p:∀x∈[0,1],a≥ex;命题q:∃x∈R,使得x2+4x+a=0.若命题p为真命题,则实数a的取值范围为;若命题p,q都为真命题,则实数a的取值范围是.

【解析】由已知命题p,q都是真命题.由∀x∈[0,1],a≥ex,得a≥e;由∃x∈R,使得x2+4x+a=0,知Δ=16-4a≥0,得a≤4,因此e≤a≤4.答案:[e,+∞)[e,4]9.(5分)命题“∃x∈R,(a2-4)x2+(a+2)x-1≥0”为假命题,则实数a的取值范围为.

【解析】由题意可知,命题“∀x∈R,(a2-4)x2+(a+2)x-1<0”为真命题.①当a2-4=0时,可得a=±2.若a=-2,则有-1<0,符合题意;若a=2,则有4x-1<0,解得x<14②若a2-4≠0,则a解得-2<a<65综上所述,实数a的取值范围是a-答案:a10.(10分)(2024·石家庄模拟)已知集合A={x|-3≤x≤4},B={x|1-m≤x≤3m-2,m>1},是否存在实数m,使得x∈A是x∈B成立的?

(1)是否存在实数m,使得x∈A是x∈B成立的充要条件?若存在,求出实数m的值;若不存在,请说明理由;【解析】(1)若存在实数m,使得x∈A是x∈B成立的充要条件,则A=B.故1-m=-33m-2=4,无解,故不存在实数m,使得(2)请在①充分不必要条件,②必要不充分条件这两个条件中任选一个补充在上面的问题中横线部分.若问题中的实数m存在,求出m的取值范围;若问题中的m不存在,请说明理由.【解析】(2)因为m>1,故3m-2>1>1-m,故B≠⌀.选①:充分不必要条件.由题意A⫋B,故-3≥1-m4≤3m-2选②:必要不充分条件.由题意B⫋A,故-3≤1-m4≥3m-2,解得m≤411.(10分)(2024·徐州模拟)已知命题p:∃x∈R,ax2+2x-1=0为假命题.设实数a的取值集合为A,设集合B={x|3m<x<m+2},若,求实数m的取值范围.

在①“x∈A”是“x∈B”的必要不充分条件;②“x∈B”是“x∈∁RA”的充分条件;③B∩∁RA=∅这三个条件中任选一个,补充到本题的横线处,并按照你的选择求解问题.【解析】由已知命题为假,则¬p:∀x∈R,ax2+2x-1≠0为真,若a=0,∀x∈R,2x-1≠0显然不成立;若a≠0,只需Δ=4+4a<0⇒a<-1;所以A={a|a<-1},选①:“x∈A”是“x∈B”的必要不充分条件,则B⫋A,若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且m+2≤-1⇒m≤-3,此时m≤-3;所以m∈(-∞,-3]∪[1,+∞);选②:“x∈B”是“x∈∁RA”的充分条件,则B⊆∁RA,而∁RA={a|a≥-1},若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且3m≥-1⇒m≥-13,此时-13≤所以m∈[-13选③:由B∩∁RA=∅,若B=∅,则3m≥m+2⇒m≥1满足要求;若B≠∅,则3m<m+2⇒m<1,且m+2≤-1⇒m≤-3,此时m≤-3;所以m∈(-∞,-3]∪[1,+∞).【能力提升练】12.(5分)(多选题)“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件有()A.0≤a<1 B.0<a<1 C.-1≤a<1 D.-1<a<2【解析】选CD.若关于x的不等式ax2-2ax+1>0对∀x∈R恒成立,当a=0时,不等式为1>0,满足题意;a≠0时,则必有a>0且Δ=(-2a)2-4a×1<0,解得0<a<1,故a的范围为{a|0≤a<1},故“关于x的不等式ax2-2ax+1>0对∀x∈R恒成立”的必要不充分条件的集合必真包含集合{a|0≤a<1},结合选项知C,D满足条件.13.(5分)(2024·杭州模拟)已知集合A={x|y=ln(2x2-x-6)},B={x|9x+m-27>0},若“x∈A”是“x∈B”的必要不充分条件,则实数m的取值范围为.

【解析】因为集合A={x|y=ln(2x2-x-6)}={x|2x2-x-6>0}={x|x>2或x<-32B={x|9x+m-27>0}={x|32x+2m>33}={x|x>12(3-2m又“x∈A”是“x∈B”的必要不充分条件,所以12(3-2m)≥2,解得m≤-1实数m的取值范围为{m|m≤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论