北京市人民大附属中学2022-2023学年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
北京市人民大附属中学2022-2023学年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
北京市人民大附属中学2022-2023学年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
北京市人民大附属中学2022-2023学年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
北京市人民大附属中学2022-2023学年八年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A.1 B.2 C.3 D.42.如图,设(),则的值为()A. B. C. D.3.已知关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠64.葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,还有一手绝招,就是它绕树盘上升的路线,总是沿着最短路线一盘旋前进的.如图,如果树的周长为5cm,从点A绕一圈到B点,葛藤升高12cm,则它爬行路程是()A.5cm B.12cm C.17cm D.13cm5.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有()个①众数是8;②中位数是8;③平均数是8;④方差是1.1.A.1 B.2 C.3 D.46.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.107.函数y=中,自变量x的取值范围是()A.x>2 B.x≥2 C.x<2 D.8.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定9.若在实数范围内有意义,则x的取值范围是()A. B. C. D.10.在下列四个图案中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=3:5,则∠BEC的度数为______.12.如图,是中边上的中线,点分别为和的中点,如果的面积是,则阴影部分的面积是___________.13.一个数的立方根是,则这个数的算术平方根是_________.14.如图,小明站在离水面高度为8米的岸上点处用绳子拉船靠岸,开始时绳子的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点的位置,问船向岸边移动了______米(的长)(假设绳子是直的).15.若(x﹣2)x=1,则x=___.16.如图,在△ABC中,∠B=10°,ED垂直平分BC,ED=1.则CE的长为.17.如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD=AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=EC中,正确的是_____.18.已知一个多边形的内角和是外角和的,则这个多边形的边数是.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.(1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.20.(6分)如图(1),,,垂足为A,B,,点在线段上以每秒2的速度由点向点运动,同时点在线段上由点向点运动.它们运动的时间为().(1),;(用的代数式表示)(2)如点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(3)如图(2),将图(1)中的“,”,改为“”,其他条件不变.设点的运动速度为,是否存在有理数,与是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.21.(6分)已知函数,(1)为何值时,该函数是一次函数(2)为何值时,该函数是正比例函数.22.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.23.(8分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.24.(8分)某商场计划销售甲、乙两种产品共件,每销售件甲产品可获得利润万元,每销售件乙产品可获得利润万元,设该商场销售了甲产品(件),销售甲、乙两种产品获得的总利润为(万元).(1)求与之间的函数表达式;(2)若每件甲产品成本为万元,每件乙产品成本为万元,受商场资金影响,该商场能提供的进货资金至多为万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.25.(10分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.26.(10分)如图,在中,,,线段与关于直线对称,是线段与直线的交点.(1)若,求证:是等腰直角三角形;(2)连,求证:.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.2、A【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【详解】解:甲图中阴影部分面积为a2-b2,乙图中阴影部分面积为a(a-b),则k===,故选A.【点睛】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.3、A【解析】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=1-m.

∵x为正数,

∴1-m>0,解得m<1.

∵x≠1,

∴1-m≠1,即m≠2.

∴m的取值范围是m<1且m≠2.

故选A.4、D【分析】将立体图形转化为平面图形,利用勾股定理解决问题即可.【详解】解:如果树的周长为5cm,绕一圈升高12cm,则葛藤绕树爬行的最短路线为:=13厘米.故选:D【点睛】本题考查平面展开﹣最短问题,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5、B【分析】分别求出射击运动员的众数、中位数、平均数和方差,然后进行判断,即可得到答案.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故①正确;10次成绩排序后为:1,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故②正确;平均数为(1+7×2+8×3+9×2+10×2)=8.2,故③不正确;方差为[(1﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.51,故④不正确;不正确的有2个,故选:B.【点睛】本题考查了求方差,求平均数,求众数,求中位数,解题的关键是熟练掌握公式和定义进行解题.6、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.7、B【分析】根据二次根式的被开方数的非负性即可.【详解】由二次根式的被开方数的非负性得解得故选:B.【点睛】本题考查了二次根式的被开方数的非负性的应用、求函数自变量的取值范围问题,掌握理解被开方数的非负性是解题关键.8、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,

∴每个外角是180°-108°=72°,

∴这个多边形的边数是360°÷72°=5,

∴这个多边形是五边形,

故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.9、B【分析】根据被开方数大于等于0列式计算即可得解.【详解】由题意得,x+1≥0,解得x≥-1.故答案为:B.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10、C【解析】轴对称图形的概念:一个图形沿一条直线折叠,直线两旁的图形能够完全重合的图形叫做轴对称图形.根据轴对称图形的概念不难判断只有C选项图形是轴对称图形.故选C.点睛:掌握轴对称图形的概念.二、填空题(每小题3分,共24分)11、100°或130°.【分析】分两种情形:①如图1中,当高BD在三角形内部时.②如图2中,当高BD在△ABC外时,分别求解即可.【详解】①如图1中,当高BD在三角形内部时,∵CE平分∠ACB,∠ACB=50°,∴∠ACE=∠ECB=25°.∵∠ABD:∠ACF=3:5,∴∠ABD=15°.∵BD⊥AC,∴∠BDC=90°,CBD=40°,∴∠CBE=∠CBD+∠ABD=40°+15°=55°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣25°﹣55°=100°②如图2中,当高BD在△ABC外时,同法可得:∠ABD=25°,∠ABD=15°,∠CBD=40°,∴∠CBE=∠CBD﹣∠ABD=40°﹣15°=25°,∴∠BEC=180°﹣25°﹣25°=130°,综上所述:∠BEC=100°或130°.故答案为:100°或130°.【点睛】本题考查了三角形内角和定理,三角形的外角的性质,三角形的角平分线的定义,三角形的高等知识,解题的关键是世界之外基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.12、1【分析】根据三角形面积公式由点D为AB的中点得到S△BCD=S△ADC=S△ABC=8,同理得到S△ADE=S△ACE=S△ACD=4,然后再由点F为AE的中点得到S△DEF=S△ADE=1.【详解】解:∵点D为BC的中点,

∴S△BCD=S△ADC=S△ABC=8,

∵点E为CD的中点,

∴S△ADE=S△ACE=S△ACD=4,

∵点F为AE的中点,

∴S△DEF=S△ADE=1,

即阴影部分的面积为1.

故答案为:1.【点睛】本题考查了三角形的中线平分面积的性质,掌握基本性质是解题的关键.13、【解析】根据立方根的定义,可得被开方数,根据开方运算,可得算术平方根.【详解】解:=64,=1.

故答案为:1.【点睛】本题考查了立方根,先立方运算,再开平方运算.14、1【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:

∵∠CAB=10°,BC=17米,AC=8米,

∴(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,

∴(米),

∴(米),∴(米),

答:船向岸边移动了1米.

故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15、0或1.【解析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=1时,(1﹣2)1=1,则x=0或1.故答案为:0或1.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.16、4【解析】试题分析:因为ED垂直平分BC,所以BE=CE,在Rt△BDE中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.17、①③④.【分析】由等边三角形的性质得出AB=AC,∠B=∠BAC=∠ACE=60,由SAS证得△ABD≌△ACE,得出∠BAD=∠CAE,AD=AE,由折叠的性质得CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,推出∠DAM=∠BAC=60,则△ADM是等边三角形,得出DM=AD,易证AB>DM,AD>DC,得出△ABD与△DCM不全等,由折叠的性质得AE=AM,CE=CM,则AC垂直平分EM,即∠ENC=90,由∠ACE=60,得出∠CEN=30,即可得出CN=EC.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACE=60,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠BAD=∠CAE,AD=AE,故①正确;由折叠的性质得:CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,∴∠DAM=∠BAC=60,∴△ADM是等边三角形,∴DM=AD,∵AB>AD,∴AB>DM,∵∠ACD>∠DAC,∴AD>DC,∴△ABD与△DCM不全等,故③正确、②错误;由折叠的性质得:AE=AM,CE=CM,∴AC垂直平分EM,∴∠ENC=90,∵∠ACE=60,∴∠CEN=30,∴CN=EC,故④正确,故答案为:①③④.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形三边关系、含30角直角三角形的性质等知识;熟练掌握折叠的性质,证明三角形全等是解题的关键.18、2【详解】解:根据内角和与外角和之间的关系列出有关边数n的方程求解即可:设该多边形的边数为n则(n﹣2)×180=×1.解得:n=2.三、解答题(共66分)19、(1)C(4,0);(2);(3).【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点、关于轴对称,∴,∴,∵,∴为等边三角形,∴,∴,∴点C的坐标为:;(2)连接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵点到的距离为,∴,∴,∴,延长交于点,过点作轴于点,连接、,∵为的角平分线,为等边三角形,∴,,∵,,∴,∴,设,在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.20、(1)2t,8-2t;(2)△ADP与△BPQ全等,线段PD与线段PQ垂直,理由见解析;(3)存在或,使得△ADP与△BPQ全等.【分析】(1)根据题意直接可得答案.(2)由t=1可得△ACP和△BPQ中各边的长,由SAS推出△ACP≌△BPQ,进而根据全等三角形性质得∠APC+∠BPQ=90°,据此判断线段PC和PQ的位置关系;(3)假设△ACP≌△BPQ,用t和x表示出边长,根据对应边相等解出t和x的值;再假设△ACP≌△BQP,用上步的方法求解,注意此时的对应边和上步不一样.【详解】(1)由题意得:2t,8-2t.(2)△ADP与△BPQ全等,线段PD与线段PQ垂直.理由如下:当t=1时,AP=BQ=2,BP=AD=6,又∠A=∠B=90°,在△ADP和△BPQ中,,∴△ADP△BPQ(SAS),∴∠ADP=∠BPQ,∴∠APD+∠BPQ=∠APD+∠ADP=90°,∴∠DPQ=90°,即线段PD与线段PQ垂直.(3)①若△ADP△BPQ,则AD=BP,,AP=BQ,则,解得;②若△ADP△BQP,则AD=BQ,AP=BP,则,解得:;综上所述:存在或,使得△ADP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,解题关键是熟练掌握全等三角形的性质和判定定理.21、(1);(2)且.【分析】(1)根据一次函数定义得到m−1≠0,易得m的值;(2)根据正比例函数定义得到m−1≠0且n=0,易得m,n的值.【详解】解:(1)当该函数是一次函数时,.当时,该函数是一次函数.(2)当该函数是正比例函数时,且.且,该函数是正比例函数.【点睛】考查了正比例函数和一次函数的定义,熟记一次函数与正比例函数的一般形式即可解题,属于基础题.22、(1)完全平方公式;平方差公式;(2);(3)【分析】(1)利用面积法解决问题即可;(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.【详解】解:(1)图1中甲图大正方形的面积乙图中大正方形的面积即∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;故答案为:完全平方公式;平方差公式;(2)如图2,作于点H,根据题意可知,根据三角形的面积可得:解得:根据勾股定理可得:根据勾股定理可得:;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形当时定值,z最小时,的值最大值易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,∴的最大值为.【点睛】本题属于三角形综合题,考查了正方形的性质、解直角三角形、完全平方公式、平方差公式、勾股定理等知识点,解此题的关键是理解题意,会用面积法解决问题,学会数形结合的思想解决问题.23、(1)证明见详解;(2)4.【分析】(1)由BF,CG分别是的高线,点D是BC的中点,可得:DG=BC,DF=BC,进而得到结论;(2)由是等腰三角形,点E是FG的中点,可得DE垂直平分FG,然后利用勾股定理,即可求解.【详解】(1)∵BF,CG分别是的高线,∴CG⊥AB,BF⊥AC,∴△BCG和△BCF是直角三角形,∵点D是BC的中点,∴DG=BC,DF=BC,∴DG=DF,∴是等腰三角形;(2)∵BC=10,∴DF=BC=×10=5,∵是等腰三角形,点E是GF的中点,∴DE⊥GF,EF=GF=×6=3,∴.【点睛】本题主要考查直角三角形的性质“直角三角形斜边上的中线等于斜边的一半”,勾股定理以及等腰三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论