版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52° B.62° C.64° D.72°2.下列运算正确的是()A.=-2 B.=3 C.=0.5 D.3.9的平方根是()A.3 B. C. D.4.下列运算结果为x-1的是()A. B. C. D.5.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D6.一个多边形的每一个外角都等于36,则该多边形的内角和等于()A.1080° B.900° C.1440° D.720°7.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+38.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A.1 B.2 C.3 D.49.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32° B.64° C.65° D.70°10.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是11.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE12.下列图形中,是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.三个全等三角形按如图的形式摆放,则_______________度.14.若代数式的值为零,则=____.15.计算(x-a)(x+3)的结果中不含x的一次项,则a的值是________.16.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等______.17.在如图所示的长方形中放置了8个大小和形状完全相同的小长方形,设每个小长方形的长为x,宽为y,根据图中提供的数据,列方程组_______.18.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10000元购买中长鼓与用8000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.三、解答题(共78分)19.(8分)分解因式:(1)x3-4x2+4x;(2)(x+1)(x-4)+3x.20.(8分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)求点的坐标和所在直线的函数关系式(2)小明能否在比赛开始前到达体育馆21.(8分)如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想.(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.22.(10分)如图,都为等腰直角三角形,三点在同一直线上,连接.(1)若,求的周长;(2)如图,点为的中点,连接并延长至,使得,连接.①求证:;②探索与的位置关系,并说明理由.23.(10分)为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?24.(10分)如图,已知点在线段上,分别以,为边长在上方作正方形,,点为中点,连接,,,设,.(1)若,请判断的形状,并说明理由;(2)请用含,的式子表示的面积;(3)若的面积为6,,求的长.25.(12分)“军运会”期间,某纪念品店老板用5000元购进一批纪念品,由于深受顾客喜爱,很快售完,老板又用6000元购进同样数目的这种纪念品,但第二次每个进价比第一次每个进价多了2元.(1)求该纪念品第一次每个进价是多少元?(2)老板以每个15元的价格销售该纪念品,当第二次纪念品售出时,出现了滞销,于是决定降价促销,若要使第二次的销售利润不低于900元,剩余的纪念品每个售价至少要多少元?26.某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的内角和得到∠OBC+∠OCB=59°,根据角平分线的定义得到∠ABC+∠ACB=2(∠OBC+∠OCB)=118°,由三角形的内角和即可得到结论.【详解】∵∠BOC=∠EOF=121°,∴∠OBC+∠OCB=59°,∵△ABC的角平分线BE,CF相交于点O,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=118°,∴∠A=180°﹣118°=62°,故选:B.【点睛】本题考查了三角形的内角和,角平分线的定义,熟练掌握三角形的内角和是解题的关键.2、D【分析】根据二次根式的性质进行化简.【详解】A、,故原计算错误;B、,故原计算错误;C、,故原计算错误;D、,正确;故选:D.【点睛】本题考查二次根式的性质,熟练掌握相关知识是解题的关键,比较基础.3、B【分析】根据平方根的定义,即可解答.【详解】解:∵,
∴实数9的平方根是±3,
故选:B.【点睛】本题考查了平方根,解决本题的关键是熟记平方根的定义.4、B【分析】根据分式的基本性质和运算法则分别计算即可判断.【详解】A.=,故此选项错误;B.原式=,故此选项g正确;C.原式=,故此选项错误;D.原式=,故此选项错误.故答案选B.【点睛】本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.5、C【解析】试题解析:A.加上AB=DE,不能证明这两个三角形全等,故此选项错误;B.加上BC=EF,不能证明这两个三角形全等,故此选项错误;C.加上AB=FE,可用证明两个三角形全等,故此选项正确;D.加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选C.6、C【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故选C.7、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.8、B【分析】过D作DF⊥BC于F,由角平分线的性质得DE=DF,根据即可解得DE的长.【详解】过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DF=DE,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,又,∴,解得:DE=2,故选:B.【点睛】本题主要考查角平分线的性质定理、三角形的面积公式,熟练掌握角平分线的性质定理,作出相应的辅助线是解答本题的关键.9、B【解析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32°∠BEH=∠DEH∠1=180-∠BEH-∠DEH=180-2∠DEH∠2=180-∠D-∠DEH-∠EHF=180-∠B-∠DEH-(∠B+∠BEH)=180-∠B-∠DEH-(∠B+∠DEH)=180-32°-∠DEH-32°-∠DEH=180-64°-2∠DEH∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)=180-2∠DEH-180+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键10、C【分析】根据最简二次根式的定义分别进行判断,即可得出结论.【详解】解:A.,故此选项错误;B.,故此选项错误;C.是最简二次根式,故此选项正确.故选:C.【点睛】本题主要考查最简二次根式,掌握最简二次根式的定义是解答此题的关键.11、D【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【详解】解:如图:A,根据SAS即可推出△ABC≌△DEF,;B.根据ASA即可推出△ABC≌△DEFC.根据AAS即可推出△ABC≌△DEF;D,不能推出△ABC≌△DEF;故选D.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.12、C【分析】根据中心对称的定义,结合所给图形逐一判断即可得答案.【详解】A.不是中心对称图形,故该选项不符合题意,B.不是中心对称图形,故该选项不符合题意,C.是中心对称图形,故该选项符合题意,D.不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查了中心对称图形的特点,判断中心对称图形的关键是寻找对称中心,旋转180°后与原图形能够重合.二、填空题(每题4分,共24分)13、180°【分析】如图所示,利用平角的定义结合三角形内角和性质以及全等三角形性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,然后进一步求解即可.【详解】如图所示,由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7==540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,∵∠5+∠7+∠8=180°,∴540°−180°−180°=180°,故答案为:180°.【点睛】本题主要考查了全等三角形性质以及三角形内角和性质,熟练掌握相关概念是解题关键.14、-2【分析】代数式的值为零,则分子为0,且代数有意义,求出x的值即可.【详解】代数式的值为零,则分子为0,及,解得,代数式有意义,则,解得:,则x=-2,故答案为-2.【点睛】本题是对代数式综合的考查,熟练掌握一元二次方程解法及二次根式知识是解决本题的关键.15、【分析】先根据多项式乘以多项式法则展开,合并同类项,令x的一次项系数为0,列出关于a的方程,求出即可.【详解】解:,∵不含x的一次项,∴3-a=0,∴a=3,故答案为:3.【点睛】本题考查了多项式乘以多项式法则,理解多项式中不含x的一次项即x的一次项的系数为0是解题的关键.不要忘记合并同类项.16、1或6【解析】试题解析:根据题意画出图形,如图所示,如图1所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=1;如图2所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或1.17、【分析】设小长方形的长为x,宽为y,根据长方形ABCD的长为17,宽的两种不同的表达式列出方程组即可得解;【详解】解:设小长方形的长为x,宽为y,根据题意得:,整理得:;故答案为:【点睛】本题考查了二元一次方程组的应用,根据图形,找到合适的等量关系列出方程组是解题的关键.18、100;1【分析】设小长鼓的单价为x元,则中长鼓的单价为(x+20)元,根据“用10000元购买中长鼓与用8000元购买小长鼓的数量相同”列出分式方程,并解方程即可得出结论.【详解】解:设小长鼓的单价为x元,则中长鼓的单价为(x+20)元根据题意可得解得:x=1经检验:x=1是原方程的解中长鼓的单价为1+20=100元故答案为:100;1.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.三、解答题(共78分)19、(1)x(x-2)2,(2)(x+2)(x-2)【分析】(1)先提公因式x,再运用完全平方公式分解因式;(2)第一项展开与第二项合并同类项,再运用平方差公式分解因式.【详解】解:(1)原式=x(x2-4x+4)=x(x-2)2;(2)原式=x2-3x-4+3x=x2-4=(x+2)(x-2).【点睛】本题主要考查分解因式,分解因式的步骤:(1)有公因式要先提公因式,(2)提公因式后,再看能否再运用公式分解因式.20、(1)点B的坐标为(15,900),直线AB的函数关系式为:.(2)小明能在比赛开始前到达体育馆.【分析】(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分,则路程和为1,即可列出方程求出小明的速度,再根据A,B两点坐标用待定系数法确定函数关系式;(2)直接利用一次函数的性质即可求出小明的父亲从出发到体育馆花费的时间,经过比较即可得出是否能赶上.【详解】(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分依题意得:15x+45x=1.解得:x=2.所以两人相遇处离体育馆的距离为2×15=900米.所以点B的坐标为(15,900).设直线AB的函数关系式为s=kt+b(k≠0).由题意,直线AB经过点A(0,1)、B(15,900)得:解之,得∴直线AB的函数关系式为:.(2)在中,令S=0,得.解得:t=3.即小明的父亲从出发到体育馆花费的时间为3分钟,因而小明取票的时间也为3分钟.∵3<25,∴小明能在比赛开始前到达体育馆.21、(1)BM=FN,证明见解析(2)BM=FN仍然成立,证明见解析.【解析】试题分析:(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN;(2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN.试题解析:(1)BM=FN.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠ABD=∠F=45°,OB=OF.又∵∠BOM=∠FON,∴△OBM≌△OFN.∴BM=FN.(2)BM=FN仍然成立.证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.∴∠MBO=∠NFO=135°.又∵∠MOB=∠NOF,∴△OBM≌△OFN.∴BM=FN.点睛:本题考查旋转知识在几何综合题中运用,旋转前后许多线段相等,本题以实验为背景,探索在不同位置关系下线段的关系,为中考常见的题型.22、(1);(2)①见解析;②,理由见解析【分析】(1)由等腰直角三角形的性质得出,,得出CD,判定∠ACD为直角,得出AD,即可得出其周长;(2)①首先判定,得出,即可判定;②连接AF,由全等三角形的性质得出,得出,再由SAS得出△ACD≌△ABF,得出AF=AD,由等腰三角形三线合一性质即可得出结论.【详解】(1)∵为等腰直角三角形,∴,,∵,∴,∴,∴,∴为直角三角形,,∴的周长;(2)①证明:∵为的中点,∴,在和中∵∴,∴,∴;②,理由如下:连接,由①得:,∴,∴,∴,在和中∵∴,∴,又∵,∴,∴,∴.【点睛】此题主要考查了等腰直角三角形的性质、全等三角形判定与性质以及平行的判定,熟练掌握,即可解题.23、A型共享单车的成本单价是200元【分析】设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,然后根据题意列出分式方程,即可求出结论.【详解】解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元根据题意可得解得:经检验:是原方程的解.答:A型共享单车的成本单价是200元.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.24、(1)等腰三角形,理由见解析;(2);(3)4【分析】(1)利用题目所给条件,通过SAS证明≌,可得出结果;(2)根据图像可知,,分别求出各部分面积可求出最终结果;(3)若的面积为6,则,因式分解后可解出最终结果.【详解】(1)为等腰三角形.∵点为的中点,∴,∵,,∴,,∵,∴≌,∴,∴为等腰三角形.(2)∵,,,∴.(3)∵,∴,∴,∵,∴,∴,即.【点睛】本题主要考查三角形综合问题,涉及证明三角形全等,三角形面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新能源产业项目融资担保合同3篇
- 2024年房地产代持业务合同模板:保障权益与规范操作6篇
- 2024年度货物运输合同中对货物损失、灭失责任的明确与承担3篇
- 2024专项产品线唯一供货商协议一
- 屈光参差性弱视病因介绍
- 2024年高级机动车鉴定评估师技能鉴定理论试题库(含答案)
- 2024年安全生产作业规定和制度
- 粮食经纪人采购合同范例
- 运维兼职合同范例
- 雇佣接送小孩合同范例
- 完整风电场运维服务合同
- 走近非遗 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 公司章程(完整版)
- 以息代租合同模板
- 2024年浙江省单独招生文化考试语文试卷(含答案详解)
- 压疮的预防和护理健康宣教课件
- 《高中体育与健康》考试复习题库及答案
- 机械设计基础(二)学习通超星期末考试答案章节答案2024年
- 医院后勤副院长年终工作总结
- 浙江省宁波市鄞州区2023-2024学年九年级上学期期末考试科学试题
- 二进制基础知识课件
评论
0/150
提交评论