北京市丰台区长辛店第一中学2022-2023学年数学八年级第一学期期末学业水平测试试题含解析_第1页
北京市丰台区长辛店第一中学2022-2023学年数学八年级第一学期期末学业水平测试试题含解析_第2页
北京市丰台区长辛店第一中学2022-2023学年数学八年级第一学期期末学业水平测试试题含解析_第3页
北京市丰台区长辛店第一中学2022-2023学年数学八年级第一学期期末学业水平测试试题含解析_第4页
北京市丰台区长辛店第一中学2022-2023学年数学八年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列选项中,属于最简二次根式的是(

)A. B.

C.

D.2.化简的结果是()A.-a-1 B.–a+1 C.-ab+1 D.-ab+b3.下列代数式中,属于分式的是()A.﹣3 B. C. D.4.若把分式(均不为0)中的和都扩大3倍,则原分式的值是()A.扩大3倍 B.缩小至原来的 C.不变 D.缩小至原来的5.若4x2+(k﹣1)x+25是一个完全平方式,则常数k的值为()A.11 B.21 C.﹣19 D.21或﹣196.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠D B.∠ABC=∠F C.BE=CF D.AC=DF7.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(x-m)2=x2+nx+36,则n的值为()A.12 B.-12 C.-6 D.±129.分式方程=的解是()A.x=﹣1 B.x=0 C.x=1 D.无解10.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65° B.95° C.45° D.85°二、填空题(每小题3分,共24分)11.如图,一只蚂蚁从点沿数轴向右爬2个单位到达点,点表示,则表示的数为______.12.计算:______.13.如图,在中,,,是中点,则点关于点的对称点的坐标是______.14.如图,已知平分,且,若,则的度数是__________.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.16.如图,边长为12的等边三角形ABC中,E是高AD上的一个动点,连结CE,将线段CE绕点C逆时针旋转60°得到CF,连结DF.则在点E运动过程中,线段DF长度的最小值是__________.17.如图,是中边中点,,于,于,若,则__________.18.在△ABC中,∠A=60°,∠B=∠C,则∠B=______.三、解答题(共66分)19.(10分)全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了,两种型号的空气净化器,已知一台型空气净化器的进价比一台型空气净化器的进价多300元,用7500元购进型空气净化器和用6000元购进型空气净化器的台数相同.(1)求一台型空气净化器和一台型空气净化器的进价各为多少元?(2)在销售过程中,型空气净化器因为净化能力强,噪声小而更受消费者的欢迎.商社电器计划型净化器的进货量不少于20台且是型净化器进货量的三倍,在总进货款不超过5万元的前提下,试问有多少种进货方案?20.(6分)(1)运用乘法公式计算:.(2)解分式方程:.21.(6分)已知:线段,以为公共边,在两侧分别作和,并使.点在射线上.(1)如图l,若,求证:;(2)如图2,若,请探究与的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,若,过点作交射线于点,当时,求的度数.22.(8分)如图,平面直角坐标系中,.(1)作出关于轴的对称图形;作出向右平移六个单位长度的图形;(2)和关于直线对称,画出直线.(3)为内一点,写出图形变换后的坐标;(4)求的面积23.(8分)如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.24.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?25.(10分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?26.(10分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点驶向终点,在整个行程中,龙舟离开起点的距离(米)与时间(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点与终点之间相距.(2)分别求甲、乙两支龙舟队的与函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据最简二次根式的概念进行判断即可.【详解】中被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;属于最简二次根式,C正确;不属于最简二次根式,D错误.故选C.【点睛】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2、B【解析】将除法转换为乘法,然后约分即可.【详解】解:,故选B.【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键.3、D【分析】根据分式的定义即可求出答案.【详解】解:是分式;故选:D.【点睛】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.4、A【分析】将原式中x变成3x,将y变成3y,再进行化简,与原式相比较即可.【详解】由题意得,所以原分式的值扩大了3倍故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.5、D【解析】∵4x2+(k﹣1)x+25是一个完全平方式,∴k-1=±2×2×5,解之得k=21或k=-19.故选D.6、C【分析】根据“SAS”证明两个三角形全等,已知AB=DE,∠B=∠DEF,只需要BC=EF,即BE=CF,即可求解.【详解】用“SAS”证明△ABC≌△DEF∵AB=DE,∠B=∠DEF∴BC=EF∴BE=CF故选:C【点睛】本题考查了用“SAS”证明三角形全等.7、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.8、D【详解】(x-m)2=x2+nx+36,解得:故选D.9、A【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选:A.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.10、B【分析】根据OA=OB,OC=OD证明△ODB≌△OCA,得到∠OAC=∠OBD,再根据∠O=50°,∠D=35°即可得答案.【详解】解:OA=OB,OC=OD,在△ODB和△OCA中,∴△ODB≌△OCA(SAS),∠OAC=∠OBD=180°-50°-35°=95°,故B为答案.【点睛】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据平移的性质得出答案即可.【详解】解:蚂蚁从点沿数轴向右爬2个单位到达点,点表示,根据题意得,表示的数为:,故答案是:.【点睛】本题考查了数轴上的点的平移,熟悉相关性质是解题的关键.12、3【分析】根据立方根和平方根的定义进行化简计算即可.【详解】-2+5=3故答案为:3【点睛】本题考查的是实数的运算,掌握平方根及立方根是关键.13、().【分析】过点A作AD⊥OB于D,然后求出AD、OD的长,从而得到点A的坐标,再根据中点坐标公式,求出点C的坐标,然后利用中点坐标公式求出点O关于点C的对称点坐标,即可.【详解】如图,过点A作AD⊥OB于D,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷=,∴点A(,),B(3,0),∵C是AB中点,∴点C的坐标为(),∴点O关于点C的对称点的坐标是:()故答案为:().【点睛】本题主要考查图形与坐标,掌握等腰直角三角形的三边之比以及线段中点坐标公式,是解题的关键.14、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.15、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.16、1【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时EG最短,再根据∠CAD=10°求解即可.【详解】解:如图,取AC的中点G,连接EG,∴.∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∠ECD=∠ECD,∴∠DCF=∠GCE,∵AD是等边△ABC底边BC的高,也是中线,∴,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时,,,∴DF=EG=1.故答案为:1.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.17、1【分析】根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=BC,FD=BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.18、60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.三、解答题(共66分)19、(1)每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)有两种方案:购B型空气净化器为7台,A型净化器为21台;购B型空气净化器为8台,A型净化器为24台.【分析】(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,,解方程可得;(2)设购B型空气净化器为x台,A型净化器为3x台,由题意得,且,解不等式可得.【详解】(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设购B型空气净化器为x台,A型净化器为3x台,由题意得解得x≤由因为,即所以x的正整数值是:7,8.所以3x=21或24答:有两种方案:购B型空气净化器为7台,A型净化器为21台;购B型空气净化器为8台,A型净化器为24台.【点睛】考核知识点:分式方程应用.理解题列出分式方程,借助不等式分析方案是关键.20、(1);(2)无解【分析】(1)先添括号化为平方差公式的形式,再根据平方差公式计算,最后根据完全平方公式计算即可;(2)先去分母化为整式方程,解整式方程,再检验得最简公分母值为0,从而得到分式方程无解.【详解】解:;解:.方程两边同时乘以,得.解得.检验:当时,,因此不是原分式方程的解,所以,原分式方程无解.【检验】本题考查了乘法公式和解分式方程,熟练掌握乘法公式和解分式方程的一般步骤是解题的关键.21、(1)见详解;(2)+2=90°,理由见详解;(3)99°.【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE与BD交点为G,由三角形外角的性质得∠CGB=∠D+∠DAE,由,得∠CGB+∠C=90°,结合,即可得到结论;(3)设∠DAE=x,则∠DFE=8x,由,+2=90°,得关于x的方程,求出x的值,进而求出∠C,∠ADB的度数,结合∠BAD=∠BAC,即可求解.【详解】(1)∵,∴∠C+∠CBD=180°,∵,∴∠D+∠CBD=180°,∴;(2)+2=90°,理由如下:设CE与BD交点为G,∵∠CGB是∆ADG的外角,∴∠CGB=∠D+∠DAE,∵,∴∠CBD=90°,∴在∆BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵,∴+2=90°;(3)设∠DAE=x,则∠DFE=8x,∴∠AFD=180°-8x,∵,∴∠C=∠AFD=180°-8x,又∵+2=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB,又∵∠BAD=∠BAC,∴∠ABC=∠ABD=∠CBD=45°,∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.22、(1)见解析;(2)见解析;(3);(4)2.5【分析】(1)由轴对称的性质,平移的性质,分别作出图形即可;(2)根据轴对称的性质,作出对称轴即可;(3)由轴对称的性质和平移的性质,即可求出点的坐标;(4)利用矩形面积减去三个小三角形的面积,即可得到答案.【详解】解:如图:(1),为所求;(2)直线l为所求;(3)由轴对称的性质,则点关于y轴对称的点;由平移的性质,则点关于y轴对称的点;(4)根据题意,结合网格问题,则;【点睛】本题考查了轴对称的性质,平移的性质,以及求三角形的面积,解题的关键是熟练掌握轴对称的性质和平移的性质,正确的作出图形.23、(1)B点坐标为(x,8-x);(2)D的坐标是(0,),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;(2)根据A点坐标为(5,0),得到OA=5,OC=3,由勾股定理得:BE=4,设OD=x,则DE=OD=x,DC=3-x,Rt△CDE中,由勾股定理得到方程求出x即可求解.【详解】(1)长方形OABC周长=1,则OA+AB=8OA=x,AB=8-xB点坐标为(x,8-x)(2)∵矩形OABC的周长为1,∴2OA+2OC=1,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5-4=1,设OD=x,则DE=OD=x,DC=3-x,在Rt△CDE中,由勾股定理得:x2=12+(3-x)2,解得:x=即OD=∴D的坐标是(0,),E的坐标是(1,3).【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.24、(1)甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天;(2)甲队应得的报酬为7500元,乙队应得的报酬为12500元.【分析】(1)首先表示出两工程队完成需要的时间,进而利用总工作量为1得出等式求出答案;(2)根据(1)中所求,进而利用两队完成的工作量求出答案.【详解】(1)设甲队单独完成此项工程需要5x天,则乙队单独完成此项工程需要3x天,根据题意得:(1解得:x=8,经检验,x=8是原方程得解,∴5x=5×8=40(天),3x=3×8=24(天).答:甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天.(2)甲队应得到20000×1乙队应得到20000×1答:甲队应得的报酬为7500元,乙队应得的报酬为125

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论