北京市北京大附属中学2022-2023学年八年级数学第一学期期末经典模拟试题含解析_第1页
北京市北京大附属中学2022-2023学年八年级数学第一学期期末经典模拟试题含解析_第2页
北京市北京大附属中学2022-2023学年八年级数学第一学期期末经典模拟试题含解析_第3页
北京市北京大附属中学2022-2023学年八年级数学第一学期期末经典模拟试题含解析_第4页
北京市北京大附属中学2022-2023学年八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.三角形的三边长可以是()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,132.在边长为的正方形中剪掉一个边长为的小正方形(),把余下的部分剪拼成一个矩形(如图).通过计算图形的面积,验证了一个等式,则这个等式是()A. B.C. D.3.下列从左边到右边的变形,是正确的因式分解的是()A. B.C. D.4.方程2x+y=5与下列方程构成的方程组的解为的是()A.x﹣y=4 B.x+y=4 C.3x﹣y=8 D.x+2y=﹣15.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm6.下列选项所给条件能画出唯一的是()A.,, B.,,C., D.,,7.下列代数式,,,,,,,,中,分式有()个.A.5 B.4 C.3 D.28.下列选项中a的值,可以作为命题“a2>4,则a>2”是假命题的反例是()A. B. C. D.9.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A.5 B.6 C.12 D.1610.有两块面积相同的试验田,分别收获蔬菜和,已知第一块试验田每亩收获蔬菜比第二块少,则第一块试验田每亩收获蔬菜为()A. B. C. D.二、填空题(每小题3分,共24分)11.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.12.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于_____cm213.如图,折叠长方形,使顶点与边上的点重合,已知长方形的长度为,宽为,则______.14.一辆汽车油箱中现存油,汽车每行驶耗油,则油箱剩余油量与汽车行驶路程之间的关系式是______________.15.如图,平面直角坐标系中的两个点,过C作轴于B,过B作交y轴于D,且,分别平分,,则的度数为______________________.16.在平面直角坐标系中,,,若的面积为,且点在坐标轴上,则符合条件的点的坐标为__________.17.如图,△ABC的三个顶点均在5×4的正方形网格的格点上,点M也在格点上(不与B重合),则使△ACM与△ABC全等的点M共有__________个.18.计算(2a)3的结果等于__.三、解答题(共66分)19.(10分)如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=1.(1)试说明:△ABC是直角三角形.(2)请求图中阴影部分的面积.20.(6分)我国的农作物主要以水稻、玉米和小麦为主,种植太单调不利于土壤环境的维护,而且对农业的发展也没有促进作用,为了鼓励大豆的种植,国家对种植大豆的农民给予补贴,调动农民种植大豆的积极性.我市乃大豆之乡,今年很多合作社调整种植结构,把种植玉米改成种植大豆,今年我市某合作社共收获大豆200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出14吨,由于今年我市小型大豆深加工企业的增多,预计能提前完成销售任务,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划的2倍还多14吨,结果提前5天完成销售任务。那么原计划零售平均每天售出多少吨?21.(6分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.(1)求AB的长;(2)求AC的长.22.(8分)已知如图,长方体的长,宽,高,点在上,且,一只蚂蚁如果沿沿着长方体的表面从点爬到点,需要爬行的最短距离是多少?23.(8分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.24.(8分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)(1)画出关于直线对称的;并写出点、、的坐标.(2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)25.(10分)(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.26.(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.2、C【分析】由题意可知大正方形剪去小正方形剩下部分的面积为;拼成的矩形的长为,宽为,则矩形面积为.由面积相等进而得出结论.【详解】∵由图可知,大正方形剪去小正方形剩下部分的面积为拼成的矩形的面积为∴故选:C【点睛】本题主要考查的是平方差公式的几何表示,能够运用不同的方法表示剩余部分的面积是解题的关键.3、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、右边不是积的形式,该选项错误;B、,该选项错误;

C、右边不是积的形式,该选项错误;D、,是因式分解,正确.

故选:D.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.4、A【分析】将分别代入四个方程进行检验即可得到结果.【详解】解:A、将代入x﹣y=4,得左边=3+1=4,右边=4,左边=右边,所以本选项正确;

B、将代入x+y=4

,得左边=3−1=2,右边=4,左边≠右边,所以本选项错误;

C、将代入3x﹣y=8,得左边=3×3+1=10,右边=8,左边≠右边,所以本选项错误;

D、将代入x+2y=﹣1

,得左边=3−2=1,右边=-1,左边≠右边,所以本选项错误;

故选A.【点睛】本题考查了二元一次方程组的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5、C【解析】设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.6、B【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4<8,不能构成三角形,故A错误;B、,,,满足ASA条件,能画出唯一的三角形,故B正确;C、,,不能画出唯一的三角形,故C错误;D、,,,不能画出唯一的三角形,故D错误;故选:B.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.7、A【分析】根据分式的定义逐个判断即可.形如(A、B是整式,B中含有字母)的式子叫做分式.【详解】解:分式有:,,﹣,,,共5个,故选:A.【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.8、C【分析】根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题,然后对选项一一判断,即可得出答案.【详解】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=-3,∵(-3)2>4,但是a=-3<2,∴当a=-3是证明这个命题是假命题的反例.故选C.【点睛】此题主要考查了利用举反例法证明一个命题是假命题.掌握举反例法是解题的关键.9、C【分析】设此三角形第三边长为x,根据三角形的三边关系求出x的取值范围,找到符合条件的x值即可.【详解】设此三角形第三边长为x,则10-4﹤x﹤10+4,即6﹤x﹤14,四个选项中只有12符合条件,故选:C.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.10、B【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程,再解方程即可.【详解】设第一块试验田每亩收获蔬菜x千克,由题意得:,解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程.二、填空题(每小题3分,共24分)11、【分析】仿照老师的推导过程,设面积为2的矩形的一条边长为x,根据x=可求出x的值,利用矩形的周长公式即可得答案.【详解】在面积为2的矩形中,设一条边长为x,则另一条边长为,∴矩形的周长为2(x+),当矩形成为正方形时,就有x=,解得:x=,∴2(x+)=4,∴x+(x>0)的最小值为2,故答案为:2【点睛】此题考查了分式方程的应用,弄清题意,得出x=是解题的关键.12、1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,,且,,即阴影部分的面积为.故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.13、1【分析】由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10,DE=EF,然后设EC=x,则DE=EF=CD−EC=8−x,首先在Rt△ABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在Rt△CEF中,由勾股定理即可求得方程:x2+42=(8−x)2,解此方程即可求得答案.【详解】∵四边形ABCD是长方形,∴∠B=∠C=90,AD=BC=10,CD=AB=8,∵△ADE折叠后得到△AFE,∴AF=AD=10,DE=EF,设EC=x,则DE=EF=CD−EC=8−x,∵在Rt△ABF中,AB2+BF2=AF2,∴82+BF2=102,∴BF=6,∴CF=BC−BF=10−6=4,∵在Rt△EFC中,EC2+CF2=EF2,∴x2+42=(8−x)2,解得:x=3,∴DE=1故答案为1.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.14、y=50-0.1x【分析】根据油箱剩余油量=油箱中现存-汽车行驶消耗的油量,即可得到答案.【详解】由题意得:10÷100=0.1L/km,∴y=50-0.1x,故答案是:y=50-0.1x.【点睛】本题主要考查一次函数的实际应用,掌握油箱剩余油量=油箱中现存-汽车行驶消耗的油量,是解题的关键.15、45°【分析】连接AD,根据角平分线的定义得到AE,DE分别平分∠CAB,∠ODB,得到∠EAO+∠EDO=45°,根据三角形内角和定理计算即可.【详解】连接AD,如图所示:

∵BD∥AC,

∴∠BAC=∠ABD,

∵∠ABD+∠ODB=90°,

∴∠BAC+∠ODB=90°,

∵AE,DE分别平分∠CAB,∠ODB,

∴,

∴,

∵∠AED+∠EAD+∠EDA=180°,即∠AED+∠EAO+∠OAD+∠EDO+∠ODA=180°,

∵∠OAD+∠ODA=90°,

∴∠AED+45°+90°=180°,

∴∠AED=45°.故答案为:45°.【点睛】本题考查平行线的性质,坐标与图形,三角形内角和定理,直角三角形两锐角互余等.熟练掌握相关定理,能得出角度之间的关系是解题关键.16、或或或【分析】根据C点在坐标轴上分类讨论即可.【详解】解:①如图所示,若点C在x轴上,且在点A的左侧时,∵∴OB=3∴S△ABC=AC·OB=6解得:AC=4∵∴此时点C的坐标为:;②如图所示,若点C在x轴上,且在点A的右侧时,同理可得:AC=4∴此时点C的坐标为:;③如图所示,若点C在y轴上,且在点B的下方时,∵∴AO=2∴S△ABC=BC·AO=6解得:BC=6∵∴此时点C的坐标为:;④如图所示,若点C在y轴上,且在点B的上方时,同理可得:BC=6∴此时点C的坐标为:.故答案为或或或.【点睛】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C点的位置分类讨论是解决此题的关键.17、3【分析】根据△ACM与△ABC全等,在网格上可以找到三个M点,可利用SSS证明△ACM与△ABC全等.【详解】根据题意在图中取到三个M点,分别为M1、M2、M3,如图所示:∵∴△ABC≌△CM1A∵∴△ABC≌△AM2C∵∴△ABC≌△CM3A故答案为:3【点睛】本题考查了全等三角形的性质和判定,本题主要利用SSS方法得到两个三角形全等.18、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方三、解答题(共66分)19、(1)证明见解析;(2)S阴影=2.【解析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=SRt△ABC-SRt△ACD,利用三角形的面积公式计算即可求解.【详解】解:(1)∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+12=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)S阴影=SRt△ABC﹣SRt△ACD=×10×1﹣×8×6=2.20、6吨【分析】设原计划零售平均每天售出x吨,根据题意可列分式方程求解.【详解】设原计划零售平均每天售出x吨,根据题意,得,解得x=6.经检验,x=6是原方程的根,答:原计划零售平均每天售出6吨.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到数量关系列方程求解.21、(1);(2)【分析】(1)根据等腰直角三角形的判定和性质即可得到结论;(2)过点D作DH⊥AC,根据等腰直角三角形的性质和勾股定理分别求出EH和CH即可.【详解】解:(1)∵∠BAC=90°,∠CED=45°,∴∠AEB=∠CED=45°,∴△ABE是等腰直角三角形,∵BE=2,∴AB=BE=;(2)过点D作DH⊥AC交AC于H,∵∠CED=45°,DH⊥EC,DE=,∴EH=DH=DE=,又∵CD=,∴CH===,∵AE=AB=,∴AC=CH+EH+AE=.【点睛】此题主要考查的是等腰直角三角形的性质和勾股定理,根据已知条件构造出直角三角形是解题关键.22、需要爬行的最短距离是cm.【分析】将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM;或将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM;或将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM;再分别在Rt△ADM、Rt△ABM、Rt△ACM中,利用勾股定理求得AM的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,在Rt△ADM中,根据勾股定理得:AM=cm;将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM,如图2,由题意得:BM=BC+MC=5+15=20cm,AB=10cm,在Rt△ABM中,根据勾股定理得:AM=cm,将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM,如图3,由题意得:AC=AB+CB=10+15=25cm,MC=5cm,在Rt△ACM中,根据勾股定理得:AM=cm,∵,,,∴,则需要爬行的最短距离是cm.【点睛】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展开为平面图形,利用勾股定理求解.23、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM1=90°∴∠PAO=∠PNM1,又∵AP=PM1,∠POA=∠PNM1=90°∴△AOP△PNM1,∴PN=OA=2,设OP=NM1=m,ON=m-2∴解得∴②如图,作于点H可证明△AOP△PHM2设HM2=n,OH=n-2∴解得∴M2(,)∴综上所述或M2(,).(4)如图,作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,∵∠CAQ=45°BG⊥x轴,B(2,3)∴AG=4,∴AQ=4,BQ=7,t==BE+EK≥BT,由面积法可得:∴×4×BT=×7×4,∴BT=因此t最小值为.【点睛】本题考查一次函数的几何应用,待定系数法求一次函数解析式及面积公式的应用,熟练掌握相关知识是解题关键.24、(1)图详见解析,A1(3,2),B1(0,1),C1(1,4);(2)点D坐标为(-1,2).【分析】(1)分别作出点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论