




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
备战2024中考数学一轮复习备战2024中考数学一轮复习第6讲尺规作图№考向解读第6讲尺规作图№考向解读➊考点精析➋真题精讲➌题型突破➍专题精练第四章三角形第6讲尺规作图→➊考点精析←→➋真题精讲←考向一尺规作平行线考向二尺规作角平分线考向三尺规作垂直平分线考向四尺规作全等三角形考向五尺规作相似三角形第6讲尺规作图→➊考点精析←一、尺规作图1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题.
2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.尺规作图是指用没有刻度的直尺和圆规作图。尺规作图可以作出许多基本图形,如线段、角、等腰三角形、矩形、正方形、正五边形、正六边形等。
一、平行线的尺规作法:
已知直线
a
和直线外一点
A,过点
A
作已知直线的平行线
b。
1.用直尺以点
A
为圆心,适当长为半径画弧,交直线
a
于点
C
和点
D。
2.分别以点
C、D
为圆心,大于二分之一
CD
的长为半径画弧,两弧相交于点
E。
3.连接
AE,并延长
AE
交直线
b
于点
B。
4.直线
AB
就是所求作的平行线。
已知直线
a
和直线外一点
A,过点
A
作已知直线的平行线
b。
1.用直尺以点
A
为圆心,适当长为半径画弧,交直线
a
于点
C
和点
D。
2.分别以点
C、D
为圆心,大于二分之一
CD
的长为半径画弧,两弧相交于点
E。
3.连接
AE,并延长
AE
交直线
b
于点
B。
4.直线
AB
就是所求作的平行线。
原理:以上两种方法都是利用了同位角相等,两直线平行的原理。二、角平分线的尺规作法:
以已知角顶点为圆心,以适当长为半径画弧,交角的两边于点
M,N。
分别以点
M,N
为圆心,大于二分之一
MN
的长为半径画弧,两弧相交于点
P。
连接
AP,交角的另一边于点
B。
射线
BP
就是所求作的角平分线。
原理:角平分线上的点到角两边的距离相等。三、垂直平分线的尺规作法:
已知线段
AB,作线段
AB
的垂直平分线。
1.分别以点
A,B
为圆心,大于二分之一
AB
的长为半径画弧,两弧相交于点
C,D。
2.连接
CD,则
CD
就是线段
AB
的垂直平分线。
原理:线段垂直平分线上的点到线段两端点的距离相等。四、全等三角形的尺规作法:
已知线段
a,b,求作线段
AB,使线段
AB
等于线段
a
加线段
b。
1.作射线
AM。
2.在射线
AM
上截取线段
AC
等于线段
a。
3.在射线
CM
上截取线段
CB
等于线段
b。
4.连接线段
AB。
则线段
AB
就是所求作的线段,且线段
AB
等于线段
a
加线段
b。
原理:两点之间线段最短。五、相似三角形的尺规作法:
已知线段
a,b,求作线段
AB,使线段
AB
等于线段
a
乘线段
b。
1.作射线
AM。
2.在射线
AM
上截取线段
AC
等于线段
a。
3.在射线
CM
上截取线段
CB
等于线段
b。
4.连接线段
AB。
则线段
AB
就是所求作的线段,且线段
AB
等于线段
a
乘线段
b。
原理:在比例中,两个外项的积等于两个内项的积。→➋真题精讲←题型一尺规作平行线1.(2022•东海县二模)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.2.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.题型二尺规作角平分线3.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于12EF的长为半径作弧,两弧在∠A.35 B.34 C.44.(2022•辽宁)如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于12CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠A.35° B.45° C.55° D.65°5.(2023•沈阳)如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,小明同学利用尺规按以下步骤作图:(1)以点E为圆心,以任意长为半径作弧交射线EB于点M,交射线EF于点N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧在∠(3)作射线EP交直线CD于点G;若∠EGF=29°,则∠BEF=度.6.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108° D.CD=17.(2023·湖南·统考中考真题)如图,在SKIPIF1<0中,SKIPIF1<0,按以下步骤作图:①以点SKIPIF1<0为圆心,以小于SKIPIF1<0长为半径作弧,分别交SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0;②分别以SKIPIF1<0,SKIPIF1<0为圆心,以大于SKIPIF1<0的长为半径作弧,在SKIPIF1<0内两弧交于点SKIPIF1<0;③作射线SKIPIF1<0,交SKIPIF1<0于点SKIPIF1<0.若点SKIPIF1<0到SKIPIF1<0的距离为SKIPIF1<0,则SKIPIF1<0的长为__________.8.(2021•无锡模拟)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹).9.(2023•鄂州)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.(1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.10.(2023·江苏苏州·统考中考真题)如图,在SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0的角平分线.以点SKIPIF1<0圆心,SKIPIF1<0长为半径画弧,与SKIPIF1<0分别交于点SKIPIF1<0,连接SKIPIF1<0.
(1)求证:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的度数.题型三尺规作垂直平分线11.(2023•辽宁)如图,在△ABC中,AB=AC,∠CAB=30°,BC=32,按以下步骤作图:①分别以点A和点B为圆心,大于12AB长为半径作弧,两弧相交于E,F两点;②作直线EF交AB于点M,交AC于点N,连接BN,则AN的长为()A.2+3 B.3+3 C.2312.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于12A.74 B.94 C.1513.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于12AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△A.13cm B.14cm C.15cm D.16cm14.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于12A.AE=CF B.DE=BF C.OE=OF D.DE=DC15.(2022•恩施州)如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于12A.5216.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于12A.23 B.4 C.6 D.17.(2023·重庆·统考中考真题)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作SKIPIF1<0的垂直平分线交SKIPIF1<0于点E,交SKIPIF1<0于点F,垂足为点O.(只保留作图痕迹)
已知:如图,四边形SKIPIF1<0是平行四边形,SKIPIF1<0是对角线,SKIPIF1<0垂直平分SKIPIF1<0,垂足为点O.求证:SKIPIF1<0.证明:∵四边形SKIPIF1<0是平行四边形,∴SKIPIF1<0.∴SKIPIF1<0①.∵SKIPIF1<0垂直平分SKIPIF1<0,∴②.又SKIPIF1<0___________③.∴SKIPIF1<0.∴SKIPIF1<0.小虹再进一步研究发现,过平行四边形对角线SKIPIF1<0中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.题型四尺规作全等三角形18.(2023·福建·统考中考真题)阅读以下作图步骤:①在SKIPIF1<0和SKIPIF1<0上分别截取SKIPIF1<0,使SKIPIF1<0;②分别以SKIPIF1<0为圆心,以大于SKIPIF1<0的长为半径作弧,两弧在SKIPIF1<0内交于点SKIPIF1<0;③作射线SKIPIF1<0,连接SKIPIF1<0,如图所示.根据以上作图,一定可以推得的结论是(
)
A.SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论