版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.3.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.10954.已知且,函数,若,则()A.2 B. C. D.5.已知函数,存在实数,使得,则的最大值为()A. B. C. D.6.若函数在时取得最小值,则()A. B. C. D.7.已知的面积是,,,则()A.5 B.或1 C.5或1 D.8.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.9.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A. B. C. D.10.设i为数单位,为z的共轭复数,若,则()A. B. C. D.11.在中,为中点,且,若,则()A. B. C. D.12.已知函数.若存在实数,且,使得,则实数a的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.14.正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是______.15.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.16.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.18.(12分)已知函数,,若存在实数使成立,求实数的取值范围.19.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.20.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.21.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?22.(10分)在四棱锥中,是等边三角形,点在棱上,平面平面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2、B【解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.3、D【解析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.4、C【解析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.5、A【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.6、D【解析】
利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.7、B【解析】∵,,∴①若为钝角,则,由余弦定理得,解得;②若为锐角,则,同理得.故选B.8、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.9、D【解析】
先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,
将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,
再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.10、A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.11、B【解析】
选取向量,为基底,由向量线性运算,求出,即可求得结果.【详解】,,,,,.故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.12、D【解析】
首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,.其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2).(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.14、【解析】
设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解.【详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径为,高为.∴正四面体的体积,圆柱的体积.则.故答案为:.【点睛】本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题.15、【解析】
先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解:因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中:由椭圆的定义:在双曲线中:,所以双曲线的实轴长为:,实半轴为则双曲线的离心率为:.故答案为:【点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.16、【解析】
根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.【详解】∵在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,∴与相似∴,即,过作于,设,,∴,化简得:,,根据函数单调性判断,时,取得最大值36,,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.18、【解析】试题分析:先将问题“存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是.考点:柯西不等式即运用和转化与化归的数学思想的运用.19、(1)(2)(i)(ii)分布列见解析,【解析】
(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为.(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为.(ii),因此,.即的分布列为0123因此数学期望为.【点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.20、(1)(2)证明见解析【解析】
(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.21、(1);(2)当BP为cm时,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.【详解】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则,化简得,解之得,或(舍),(2)设BP=t,则,,设,,令f'(t)=0,因为,得,当时,f'(t)<0,f(t)是减函数;当时,f'
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三单元《课外古诗词诵读》教学设计-2024-2025学年统编版语文七年级上册
- 小学一年级上册生活、生命与安全教案
- 机械设备搬迁外包协议
- 实施乡村振兴战略是建设现代化经济体系的重要基础
- 道 法集体生活成就我课件-2024-2025学年统编版道德与法治七年级上册
- 2024年咨询工程师(经济政策)考试题库(必刷)
- OA实施方案文档
- 2023-2024学年全国小学四年级上科学仁爱版模拟考试试卷(含答案解析)
- 2024年锅炉买卖合同范本
- 2024年松散型联营合同
- 2024年公开招聘事业单位工作人员报名登记表
- 物理透镜 课件 2024-2025学年苏科版物理八年级上册
- 2024-2030年中国水电行业市场发展分析及发展趋势与投资前景研究报告
- 2024年全国高考数学试题及解析答案(新课标Ⅱ卷)
- 2023-2024学年天津市津南区九年级上学期期中化学试题
- 2024年10月自考湖南省06091薪酬管理押题及答案
- 2024年华侨、港澳、台联考高考数学试卷含答案
- DB65-T 4770-2024 和田玉(青白玉)分级规范
- 2024统编版新教材道德与法治七年级全册内容解读课件(深度)
- 五级应急救援员职业鉴定考试题库(含答案)
- 第十二届广东省安全知识竞赛暨粤港澳安全知识竞赛选拔赛考试题库资料(含答案)
评论
0/150
提交评论