2023届广东省阳东广雅学校八年级数学第一学期期末复习检测模拟试题含解析_第1页
2023届广东省阳东广雅学校八年级数学第一学期期末复习检测模拟试题含解析_第2页
2023届广东省阳东广雅学校八年级数学第一学期期末复习检测模拟试题含解析_第3页
2023届广东省阳东广雅学校八年级数学第一学期期末复习检测模拟试题含解析_第4页
2023届广东省阳东广雅学校八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数 B.互为倒数 C.相等 D.a比b大2.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定3.一次函数(m为常数),它的图像可能为()A. B.C. D.4.小明和小亮同时从学校出发到新华书店去买书,学校和书店相距7500米,小明骑自行车的速度是小亮步行速度的1.2倍,小明比小亮早15分钟到书店,设小亮速度是千米/小时,根椐题意可列方程是()A. B. C. D.5.如图,在平面直角坐标系中,为坐标原点,点在轴正半轴上,点,,……在射线上,点,,……在射线上,,,,……均为等边三角形,依此类推,若,则点的横坐标是()A. B. C. D.6.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A.1 B.2 C.3 D.47.化简的结果为()A.﹣1 B.1 C. D.8.不等式组的最小整数解是()A.0 B.-1 C.1 D.29.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于12③作射线BM交AC于点D,则∠BDC的度数为().A.100° B.65° C.75° D.105°10.若分式方程无解,则的值为()A.5 B.4 C.3 D.011.如图,一张长方形纸片的长,宽,点在边上,点在边上,将四边形沿着折叠后,点落在边的中点处,则等于()

A. B. C. D.12.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3二、填空题(每题4分,共24分)13.若已知,,则__________.14.a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状_____.15.如图,∠BCD是△ABC的外角,CE平分∠BCD,若AB=AC,∠ECD=1.5°,则∠A的度数为_____.16.小明把一副含45°,30°角的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠1+∠2等于_________.17.对于实数,,定义运算“”如下:.若,则_____.18.如图,已知中,,是高和的交点,,则线段的长度为_____.三、解答题(共78分)19.(8分)先化简再求值:,其中20.(8分)如图,在中,D是的中点,,垂足分别是.求证:AD平分.21.(8分)如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.22.(10分)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.23.(10分)2019年,在新泰市美丽乡村建设中,甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.己知道路硬化和道路拓宽改造工程的总里程数是1.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的施工任务后,通过技术改进使工作效率比原来提高了.设乙工程队平均每天施工米,若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数和施工的天数.24.(10分)如图,锐角,,点是边上的一点,以为边作,使,.(1)过点作交于点,连接(如图①)①请直接写出与的数量关系;②试判断四边形的形状,并证明;(2)若,过点作交于点,连接(如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.25.(12分)潍坊市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录.问:旺季每间价格为多少元?该酒店豪华间有多少间?淡季旺季未入住间数120日总收入(元)228004000026.在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.⑴如图①,若,求的度数;⑵如图②,若,求的度数;⑶若,直接写出用表示大小的代数式.

参考答案一、选择题(每题4分,共48分)1、A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把看作常数合并关于的同类项,的一次项系数为0,得出的关系.【详解】∵又∵的积中不含的一次项∴∴与一定是互为相反数故选:A.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.2、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.3、A【分析】根据一次项系数-1<0可判断函数增减性,根据可判断函数与y轴交点,由此可得出正确选项.【详解】解:∵-1<0,,∴一次函数与y轴相交于非负半轴,且函数是递减的,符合条件的选项为A,故选:A.【点睛】本题考查了一次函数图象与系数的关系,熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大,图象一定过第一、三象限;当k<0,y随x的增大而减小,图象一定过第二、四象限;当b>0,图象与y轴的交点在x轴上方;当b=0,图象过原点;当b<0,图象与y轴的交点在x轴下方.4、D【分析】由题意设小亮速度是千米/小时,根椐题意小明比小亮早15分钟到书店列出方程即可.【详解】解:由小明比小亮早15分钟到书店可得小亮的行程时间减去小明的行程时间等于小时,所以列出方程为.故选:D.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是根据题干数量关系列出分式方程.5、B【分析】根据等边三角形的性质和以及外角的性质,可求得,可求得,由勾股定理得,再结合的直角三角形的性质,可得点横坐标为,利用中位线性质,以此类推,可得的横坐标为,的横坐标为……,所以的横坐标为,即得.【详解】,为等边三角形,由三角形外角的性质,,,由勾股定理得,的纵坐标为,由的直角三角形的性质,可得横坐标为,以此类推的横坐标为,的横坐标为……,所以的横坐标为,横坐标为.故选:B.【点睛】考查了图形的规律,等边三角形的性质,的直角三角形的性质,外角性质,勾股定理,熟练掌握这些性质内容,综合应用能力很关键,以及类比推理的思想比较重要.6、D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.7、B【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:.故选B.8、A【解析】解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A9、D【解析】利用等腰三角形的性质结合三角形内角和定理得出∠ABC=∠C=50°,再利用角平分线的性质与作法得出即可.【详解】∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由题意可得:BD平分∠ABC,则∠ABD=∠CBD=25°,∴∠BDC的度数为:∠A+∠ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.10、A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:,方程两边同时乘以(x-4)得,,由于方程无解,,,,故选:.【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.11、D【分析】连接BE,根据折叠的性质证明△ABE≌△,得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE,再根据勾股定理即可求出BE得到EG.【详解】连接BE,由折叠得:,=90°,,∴△ABE≌△,∴BE=EG,∵点G是AD的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE,在Rt△ABE中,,∴,∴EG=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE,由此利用勾股定理解题.12、D【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】∵x-3≠1,∴x≠3,故选:D.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.二、填空题(每题4分,共24分)13、1【分析】利用平方差公式,代入x+y=5即可算出.【详解】解:由=5把x+y=5代入得x-y=1故本题答案为1.【点睛】本题考查了平方差公式的运用,熟练掌握相关知识点事解决本题的关键.14、等边三角形.【解析】由两点关于x轴对称可得a-c=0,a=b,进而根据三角形三边关系判断△ABC的形状即可.【详解】解:∵点(a-c,a)与点(0,-b)关于x轴对称,∴a-c=0,a=b,∴a=b=c,∴△ABC是等边三角形,故答案为等边三角形.【点睛】此题主要考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数.15、30°【分析】根据CE平分∠BCD以及∠BCD是△ABC的外角,得出∠ACB的度数,再根据AB=AC可得∠B=∠ACB,根据三角形内角之和为180°即可求出∠A的度数.【详解】∵CE平分∠BCD,∠ECD=1.5°,∴∠BCD=2∠ECD=105°,∴∠ACB=180°﹣∠BCD=180°﹣105°=75°,∵AB=AC,∴∠B=∠ACB=75°,∴∠A=30°,故答案为:30°.【点睛】本题考查了三角形的角度问题,掌握三角形外角的性质、三角形内角之和为180°、等腰三角形的性质是解题的关键.16、210°【分析】由三角形外角定理可得,,故==,根据角的度数代入即可求得.【详解】∵,,∴====210°.故答案为:210°.【点睛】本题主要考查了三角形外角性质,熟练掌握三角形中角的关系是解题的关键.17、【分析】根据题意列出方程,然后用直接开平方法解一元二次方程.【详解】解:根据题目给的算法列式:,整理得:,,,.故答案是:.【点睛】本题考查解一元二次方程,解题的关键是掌握解一元二次方程的方法.18、1【分析】根据和得出为等腰直角三角形,从而有,通过等量代换得出,然后利用ASA可证,则有.【详解】为等腰直角三角形在和中,故答案为:1.【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键.三、解答题(共78分)19、,12.【分析】先利用完全平方公式、多项式乘法去括号,再通过合并同类项进行化简,最后将x和y的值代入即可.【详解】原式将代入得:原式.【点睛】本题考查了多项式的乘法、整式的加减(合并同类项),熟记运算法则和公式是解题关键.20、见解析【分析】首先证明,然后有,再根据角平分线性质定理的逆定理即可证明.【详解】∵D是的中点,.,.在和中,,.,∴点D在的平分线上,∴AD平分.【点睛】本题主要考查角平分线性质定理的逆定理和全等三角形的判定及性质,掌握角平分线性质定理的逆定理和全等三角形的判定及性质是解题的关键.21、(1)如图所示,见解析;(2)见解析.【分析】(1)根据角平分线的尺规作图方法即可解答;(2)根据AD是△ABC的角平分线,得到∠BAD=∠CAD,再由∠ABC=∠ACB证得AB=AC,即可证明△ABE≌△ACE(SAS).【详解】(1)如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠ABC=∠ACB,∴AB=AC,∵在△ABE和△ACE中,∴△ABE≌△ACE(SAS).【点睛】此题考查角平分线的作图方法,角平分线定理的应用,熟记定理内容并熟练应用解题是关键.22、-7x2-x+,【解析】先根据整式的混合运算顺序和运算法则化简原式,再解不等式组求得其整数解,代入计算可得.【详解】解:解不等式组得1≤x<2,其整数解为1.∵-3x2-[x(2x+1)+(4x3-5x)÷2x]=-3x2-2x2-x-2x2+=-7x2-x+.∴当x=1时,原式=-7×12-1+=-.【点睛】本题主要考查整式的化简求值和解一元一次不等式,解题的关键是掌握整式混合运算顺序和运算法则.23、(1)道路硬化里程数为5.4千米,道路拓宽里程数为3.2千米;(2)乙工程队平均每天施工20米,施工的天数为160天【分析】(1)设道路拓宽里程数为x千米,则道路硬化里程数为(2x-1)千米,根据道路硬化和道路拓宽改造工程的总里程数是1.6千米,即可得出关于x的一元一次方程,解之即可得出结论;(2)设乙工程队平均每天施工a米,则甲工程队技术改进前每天施工(a+10)米,技术改进后每天施工(a+10)米,由甲、乙两队同时完成施工任务,即可得出关于a的分式方程,解之经检验后即可得出a值,再将其代入中可求出施工天数.【详解】解:(1)设道路拓宽里程数为千米,则道路硬化里程数为千米,依题意,得:,解得:,.答:道路硬化里程数为5.4千米,道路拓宽里程数为3.2千米.(2)设乙工程队平均每天施工米,则甲工程队技术改进前每天施工米,技术改进后每天施工点米,依题意,得:乙工程队施工天数为天,甲工程队技术改造前施工天数为:天,技术改造后施工天数为:天.依题意,得:,解得:,经检验,是原方程的解,且符合题意,.答:乙工程队平均每天施工20米,施工的天数为160天.【点睛】本题考查了一元一次方程的应用、列代数式以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,用含a的代数式表示出施工天数;找准等量关系,正确列出分式方程.24、(1)①;②平行四边形,证明见解析;(2)成立,证明见解析.【分析】(1)①根据,两角有公共角,可证;②连接EB,证明△EAB≌△DAC,可得,再结合平行线的性质和等腰三角形的判定定理可得EF=DC,由此可根据一组对边平行且相等的四边形是平行四边形证明四边形为平行四边形.(2)根据,可证明△AED和△ABC为等边三角形,再根据ED∥FC结合等边三角形的性质,得出∠AFC=∠BDA,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形.【详解】解:(1)①,理由如下:∵,,,∴,∴;②证明:如下图,连接EB,在△EAB和△DAC中∵∴△EAB≌△DAC(SAS)∴,∵,∴,∴,∵,∴,∴,∴,∴∴四边形为平行四边形;(2)成立;理由如下:

理由如下:∵,∴,∵AE=AD,AB=AC,∴△AED和△ABC为等边三角形,∴∠B=60°,∠ADE=60°,AD=ED,∵ED∥FC,

∴∠EDB=∠FCB,

∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB,

∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),

∴AD=FC,

∵AD=ED,

∴ED=CF,

又∵ED∥CF,

∴四边形EDCF是平行四边形.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质和判定,等边三角形的性质和判定,平行四边形的判定定理,平行线的性质.在做本题时可先以平行四边形的判定定理进行分析,在后两问中已知一组对边平行,所以只需证明这一组对边相等即可,一般证明线段相等就是证明相应的三角形全等.本题中是间接证明全等,在证明线段相等的过程中还应用到等腰三角形的判定定理(第(1)小题的第②问)和等边三角形的性质(第(2)小题),难度较大.25、旺季每间为800元,酒店豪华间有50间.【分析】设淡季每间价格为元,该酒店有间豪华间,则旺季时每间单价为元,根据日总收入=豪华间的单价×入住的房间数,即可得出关于,的方程组,解之即可得出结论.【详解】解:设淡季每间价格为元,该酒店有间豪华间,则旺季时每间单价为元,根据题意得:解得:∴,答:旺季每间为800元,酒店豪华间有50间.【点睛】本题考查了二元一次方程组,找准等量关系,正确列出方程组是解题的关键.26、(1)∠EAN=44°;(2)∠EAN=16°;(3)当0<α<90°时,∠EAN=180°-2α;当α>90°时,∠EAN=2α-180°.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论