新湘教版七年级下册数学教案全册_第1页
新湘教版七年级下册数学教案全册_第2页
新湘教版七年级下册数学教案全册_第3页
新湘教版七年级下册数学教案全册_第4页
新湘教版七年级下册数学教案全册_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章二元一次方程组

1.1二元一次方程组

教学目标

1.了解二元一次方程,二元一次方程组和它的一个解含义。会检验一对对数

是不是某个二元一次方程组的解。

2.激发学生学习新知的渴望和兴趣。

教学重点

1.设两个未知数列方程。

2.检验一对数是不是某个二元一次方程组的解。

教学难点

方程组的一个解的含义。

教学过程

一、创设问题情境。

问题:小亮家今年1月份的水费和天然气费共46.4元,其中水费比

天然气费多5.6元,这个月共用了13吨水,12立方米天然气。你能算出

1吨水费多少元。1立方米天然气费多少元吗?

二、建立模型。

1.填空:

若设小亮家1月份总水费为x元,则天然气费为元。可列一

元一次方程为做好后交流,并说出是怎样想的?

2.想一想,是否有其它方法?(引导学生设两个未知数)。

设小亮家1月份的水费为x元,天然气为y元。列出满足题意的方程,

并说明理由。还有没有其他方法?

3.本题中,设一个未知数列方程和设两个未知数列方程哪能个更简单?

三、解释。

1.察此列方程。x+y=46.4x+y=5.6(13x+12y=46.4,13x—12y=5.6)

说一说它们有什么特点?讲二元一次方程概念。

2.二元一次方程组的概念。

,..[x=1[x=0fx=0.1[x=100

3.检查\\\\

y=45.4[y=46.4[y=46.3[y=-200

是否满足方程x+y=46.4。简要说明二元一次方程的解。

x=26x=l口-、土人、廿,iy=46.4,

4.A分别检查1\是否适合方程组1中的每一

y—20.4[y-45.4[x-y-5.6

个方程?

讲方程组的一个解的概念。强调方程组的解是相关的一组未知数

的值。这些值是相互联系的。而且要满足方程组中的每一个方程,写

的时候也要象写方程组一样用{括起来。

5.解方程组的概念。

四、练习。

1.P23练习题。

2.P24习题2.1B组题。

五、小结。

通过本节课学习你学到了什么?

六、作业。

P23习题2.1A组题。

后记:

1.2二元一次方程组的解法

1.2.1代入消元法

教学目标

1.了解解方程组的基本思想是消元。

2.了解代入法是消元的一种方法。

3.会用代入法解二元一次方程组。

4.培养思维的灵活性,增强学好数学的信心。

教学重点

用代入法解二元一次方程组消元过程。

教学难点

灵活消元使计算简便。

教学过程

一、引入本课。

接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元

一次方程组?

二、探究。

比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

(+—464(1)

(x+(x-5.6)=46.4《\)》+(%-5.6)=46.4与》+y=46.4比较

x—y=5.6(2)

x+y=46.4中的y就贬一5.6,而由(2)可得y=x-5.6(3)o把(3)代入(1)。

可得一元一次方程。想一想本题是否有其它解法?

讨论:解二元一次方程组基本想法是什么?

5x-y=-9(1)

例1:解方程组

y=-3x+l(2)

讨论:怎样消去一个未知数?

解出本题并检验。

2x-3y=0(l)

例2:解方程组

5x-7^=l(2)

讨论:与例1比较本题中是否有与y=-3x+l类似的方程?

怎样解本题?

学生完成解题过程。

草稿纸上检验所得结果。

简要概括本课中解二元一次方程组的基本想法,基本步骤。

介绍代入消元法。(简称代入法)

三、练习

P27.练习题。

四、小结

本节课你有什么收获?

五、作业

习题2.2A组第1题。

后记:

1.2.2加减消元法(1)

教学目标

1.进一步理解解方程组的消元思想。知道消元的另一途径是加减法。

2.会用加沽法解能直接相加(减)消去未知当数的特殊方程组。

3.培养创新意识,让学生感受到“简单美”。

教学重点

根据方程组特点用加减消元法解方程组。

教学难点

加减消元法的引入。

教学过程

一、探究引入。

如何解方程组?

2%+5y=9(1)

'2x-3y=17⑵

1.用代入法解(消x),指名板演,解完后思考:

2.在由(1)或(2)算用y的代数或表示x时要除以x系数2。代入另一方

程时又要乘以系数2。是否可以简单一些?用“整体代换”思想把2x作一

个未知当选消元求解。

3.还有没有更简单的解法。

引导学生用(1)-(2)消去x求解。

提问:(1)两方程相减根据是什么?(等式性质)

(2)目的是什么?(消去x).

比较解决此问题的3种方法,观察方法3与方法1、2的差别引入本课。

新课

1.讨论下列各方程组怎样消元最简便。

⑴『0.5x+y=46x+3y=9

(2)』

0.5x+3y=87x+3y=10

/八、3/7t-n-6=03x-4y=10

(3)\(4),

4m-n-4=03x=2y+4

2.例L解方程组

7x+3y=1

2x-3y=8

提问:怎样消元?

学生解此方程组。

3.例2.解方程组

2x-3y=9

3x=3y-l1

讨论:怎样消元解此方程组最简便。

学生解此方程组。

检验。

讨论:以上例题中,被消去的未知数的系数有什么特点?

练习。

1.P32练习题⑴、⑵、(4)。

2.解方程组

m-n-5

V

3m-n=-1

3.已知|2%+3》+5|+(5%-3》+2)2=()。

求x、y的值。

小结。

通过本课学习,你有何收获?

作业。

P33习题2-2A组第2题(1)、(2)。

B组第2题。

后记:

1.2.2加减消元法(2)

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

5x-4y=18

+4y=2

二、新课。

1.思考如何解方程组(用加减法)。

2x+3y=-11

6x-5y=9

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或

互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

'3x+4y=8

4x+3y=-1

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.P40练习题(3)、⑸、(6)。

2.分别用加减法,代入法解方程组。

5x-3y=13

2x+4),=0

四、小结。

解二元一次方程组的加减法,代入法有何异同?

五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

1.3二元一次方程组的应用(1)

教学目标

1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学

模型。

3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

教学重点

1.列二元一次方程组解简单问题。

2.彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共

花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路

上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,

只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能

猜出来吗?

二、建立模型。

1.怎样设未知数?

2.找本题等量关系?从哪句话中找到的?

3.列方程组。

4.解方程组。

5.检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1.根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,

女生人数。

(3)已知关于求x、y的方程,3x3a+b+4y2a-b=4

是二元一次方程。求a、b的值。

2.P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42O习题2.3A组第1题。

后记:

1.3二元一次方程组的应用(2)

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1.小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,

第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,

离她自己家分别为13千米、25千米。你能算出她的速度吗?还能

算出她家与外祖母家相距多远吗?

探究:1.你能画线段表示本题的数量关系吗?

2.填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,

第二天她走2小时趟的路程是_—千米。此时她离家距离是

千米;她走5小时走的路程是千米,此时她离家

的距离是千米。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,

求船在静水中速度,水流的速度。

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2

天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每

天各做多少个零件?

2.P38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

五、作业。

P42•2•

1.3二元一次方程组的应用(3)

教学目标

1.会列二元一次方程组解简单应用题。

2.提高分析问题解决问题能力。

3.进一步渗透数学建模思想,培养坚韧不拔的意志。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.彻底把握题意。

2.找等量关系。

教学过程

一、引入。生活中处处有数学,就连住的地方也不例外,引出P38“动脑筋”

问题。

二、新课。

1.学生完成P39-40“动脑筋”的有关问题,完成互相检查。找出错误及

原因,学生解决不了的可举手问老师。

2.例LP40例2。

学生读题回答:

(1)有哪几咱可用原料?原料和配制的成品的百分比各是多少?

本题求什么?

(2)讨论:本题中包含哪两个等量关系?

设未知数,列方程组。

思考:怎样解出方程组?较复杂的方程能否化简?

学生解出方程,检验,写出答案。

三、练习。

1.建立方程组。

(1)两只水管同时开放时过J小时可将一个容积为60米,的水池注满。

3

若甲管单独开放1小时,再单独开放乙水管!小时,只能注满水池的

6

-0问每只水管每小时出水多少米3?

3

(2)两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合

得到含金空的新合金25克,计算原来两块合金的重量。

1000

2.P42.练习题。

学习有困难的学生可讨论完成。

四、小结。

讨论:列二元一次方程组解应用题基本步骤是什么?哪一步(几步)最关

键?

五、作业。

P43.习题2.3A组第3.4题。

选作B组题。

第二章整式的乘法

2.1.1同底数黑的乘法

教学目标

1.使学生在了解同底数嘉乘法意义的基础上,掌握嘉的运算性质(或称

法则),进行基本运算。

2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

3、掌握计算机硬盘的容量单位及换算。

教学重点:同底数嘉相乘的法则的推理过程及运用

教学难点:同底嘉相乘的运算法则的推理过程。

教学方法:讲练结合

教学过程:

一、准备知识

1、2?表示什么意义?计算它的结果。

2、计算(1)2:,X22(2)3:,X32

3、几个负数相乘得正数?几个负数相乘得负数?

二、探究新知

1、P88做一做

(1)计算a3-a2

(2)归纳am-a"=……=a""(m、n都是正整数)

(3)文字叙述:数嘉相乘,底数不变,指数相加。

(4)动脑筋当三个或三个以上的同底数嘉相乘时,怎样用公式表示运

算的结果。a"•an•ap=……二a』(m、n、p都是正整数)

2、范例分析(P89例1至例3)

例1计算(1)lO^xio,(2)x3-x1

解:(1)105X103=105+3=1()8

(2)x3•x4=x/4=x,

例2计算:(1)32X33X3'(2)y-y2-y4

注意:y的第一项的次数是1。按教材写出解答。

例3计算:(1)(—a)(—a)(2)y"•y""

注意:负数相乘时的要掌握它的符号法则。

3、计算机硬盘的容量单位的换算

计算机硬盘的容量的最小单位是字节(byte)o1个英文字母占一个字节,

一个汉字占两个字节。

计算机的容量的常用单位是K、M、Go其中烝=21°个字节=1024个字节,

1M=1O24K,lG=1024Mo想一想:1G等于多少个字节?一篇1000字的作文大

约占多少个字节?1M字节可以保多少篇1000字的作文?常用的MP3的容量是

多大?

三、练习与小结

1、练习P90的练习1、2题

2、小结:

(1)同底数暴相乘,底数不变,指数相加,对这个法则要注重理解“同底、

相乘、不变、相加”这八个字。(2)解题时要注意a的指数是1。(3)解题时,

是什么运算就应用什么法则.同底数嘉相乘,就应用同底数嘉的乘法法则;

整式加减就要合并同类项,不能混淆。(4)-2的底数a,不是-a。计算,2・a2

的结果是-(a2・a2)=-a4,而不是是a)2+2=a40(5)若底数是多项式时,要把

底数看成一个整体进行计算。

(2)掌握计算机的硬盘的常用容量单位。了解一般MP3与MP4的容量大小。

四、布置作业

P99习题4.2A组1、2题

后记:

2.1.2嘉的乘方与积的乘方(1)

教学目标:

1、经历探索嘉的乘方的运算性质的过程,进一步体会霖的意义,发展推理能

力和有条理的表达能力。

2、了解嘉的乘方与积的乘方的运算性质,并能解决一些实际问题。

教学重点:会进行嘉的乘方的运算。

教学难点:得的乘方法则的总结及运用。

教学方法:尝试练习法,讨论法,归纳法。

教学过程:

一、知识准备

1、复习同底数幕的运算法则及作业讲评

2、计算:(23)2(32)2

3、6,表示4个6相乘。(6)'表示4个N相乘。

二、探究新知

1、P90做一做

(1)计算(a:')=a3aLa3a乘方的意义

=a„*3同底数嘉相乘的法则

=a3XI

=a12

(2)归纳法则(a)』=a皿(m、n为正整数)

(3)语言叙述:嘉的乘方,底数不变,指数相乘。

2、范例分析(P91的例题)

例计算

(1)(103)2(2)(xl)3(3)-(a1)3

(4)(xm)4(5)(a1)3-a3

(按教材有关内容讲解)

三、练习与小结

1、完成P91至P92的练习题

2、判断题,错误的予以改正。

(1)a5+a5=2a'°()

(2)(s3)=x6()

(3)(-3)2-(-3)=(-3)=-36()

(4)x+y:i=(x+y)3()

(5)[(m—n)(m-n)'-0()

学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用。

3、小结:会进行糯的乘方的运算。

四、布置作业:

P99习题4.2A组3题

补充:计算(1)(x6)2.(-x3)3

(2)(-x3)2-(-x2)3

(3)[(m—n)3Y

后记:

嘉的乘方与积的乘方(2)

教学目的:

1、经历探索积的乘方的运算性质的过程,进一步体会嘉的意义,发展推理

能力和有条理的表达能力。

2、了解积的乘方的运算性质,并能解决一些实际问题。

教学重点:积的乘方的运算

教学难点:正确区别寨的乘方与积的乘方的异同。

教学方法:探索、猜想、实践法

教学过程:

一、课前练习:

1、计算下列各式:

(l)x5-x2=(2)x6-x6=(3)/+/=_______

(4)-x-x3-x5=(5)(-x)•(-x)3=_____

(6)3X3-X2+X-X4=(7)(x3)3=(8)-(x2)5=

(9)(。2)3.炉=(10)-(加3)3.(62)4=(11)(钟)3=________

2、下列各式正确的是()

(A)(«5)3-as(B)a2-a3=a6(C)x2+x3=x5(D)x2-x2=x4

二、探究新知:

1、计算下列各题:

(1)计算:23X53=x==(_x_?

(2)计算:28x58=x==(x___f

(3)计算:212X5,2=x==(__x__j2

从上面的计算中,你发现了什么规律?

2、猜一猜填空:(1)(3x5)4=3(->-5(—)(2)(«Z?)3=a^-b(^

(3)(ab)"=a^-b(^你能推出它的结果吗?

3、归纳结论:(ab)n=a"-b"(n为正整数)

4、文字叙述:积的乘方等于把各个因式分别乘方,再把所得的得相乘。

5、范例分析(P92的例1和例2)

例1、计算:

(1)(—2x)3(2)(-4盯/

(3)(x/)3(4)(-^xy2z3)4

(按教材内容分析后进行讲解,并板书,注意它的符号及分数的乘方的计算问题)

例2计算:

(1)2(—a)2・(〃)3—3储・(_")2(按步骤分步进行计算)

(2)28X57(补充题)

三、练习及小结:

1、练习P93的练习题

2、课堂小结:本节课学习了积的乘方的性质及应用,要注意它与嘉的乘方的

区别。

四、布置作业

P99习题4.24题

补充:计算:(1)2(—4)3.(力2)4+3q3・(_84)2

(2)26X55X3

后记;

2.1.3单项式的乘法

教学目标

1、使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计

算;2、注意培养学生归纳、概括能力,以及运算能力。

教学重点:单项式的乘法法则及其应用

教学难点:准确、迅速地进行单项式的乘法运算。

教学过程

一、准备知识

1.下列单项式各是几次单项式?它们的系数各是什么?

6x;-2a2be;xy2;-;—vt4;—lO^y2z3

107­

2.下列代数式中,哪些是单项式?哪些不是?

-2_x'3;ab1;1+x;----;-y;6/x2——1%+7r

52

3.利用乘法的交换律、结合律计算:6X4X13X25

4.前面学习了哪三种寡的运算性质?内容是什么?

(l)a'n-an=……=a"n(2)(a")"==a"n(m、n为正整数)

(3)W=an-bn(n为正整数)

二、探究新知

1、做一做(P93)

怎样计算4x?y与-3xy2z的乘积?

解:4x2y・(-3xy2z)为什么加乘号?可以省略吗?

=[4X(-3)](X2-X)•(y•y2)-z运用了乘法的交换律和结合律

=-12x3y3z运用同底数的寨的乘法法则

2、归纳单项式的乘法法则

两个或两个以上的单项式相乘,把系数相乘,同底数累的相加。(对

于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)

引导学生剖析法则:(1)法则实际分为三点:①系数相乘一一有理数

的乘法;②相同字母相乘一一同底数霖的乘法;③只在一个单项式中含有

的字母,连同它的指数作为积的一个因式,不能丢掉这个因式。(2)不论

几个单项式相乘,都可以用这个法则。(3)单项式相乘的结果仍是单项式。

3、计算下列单项式乘以单项式(学生计算):

2x?y•3xy3

=(2X3)(x2•x)(y•y3)

=6x3y4;

4、范例分析

例1计算:

(1)(-2x3y2)•(3x2y);(2)(2a)2•(-3a2b);

⑶⑵叫)•(-

4

(引导学生分析后,按教材内容写出解答)

注意:(1)正确使用单项式乘法法则(2)同底数嘉相乘注意指数

是1的情况(3)单独一个单项式中有的字母照写。

例2人造卫星绕地球运行的速度(即第一宇宙速度)是7.9X10,米/

秒,求卫星绕地球运行一天所走过的路程(用科学记数法表示)

解:根据题意,得:

(7.9X103)X(24X60X60)

=(7.9X6X6X24)X(10X10X103)

=(864X7.9)X105

=6825.6X105

=6.8256X10s(米)

三、小结与练习

1、练习P941至4小题

2、课堂小结

四、布置作业:

P99习题4.25题

补充题:

1、计算:

23223423

(1)(3xy),(-4xy);(2)(-xyz)•(-xy)o

后记:

2.2.1平方差公式

教学目标:1、经历探索平方差公式的过程,进一步发展学生的符号感和推

理能力;2、会推导平方差公式,并能运用公式进行简单的计算;3、了解平方差

公式的几何背景。

教学重点:1、弄清平方差公式的来源及其结构特点,能用自己的语言说明

公式及其特点;2、会用平方差公式进行运算。

教学难点:会用平方差公式进行运算

教学方法:探索讨论、归纳总结。

教学过程:

一、准备知识:

1、计算下列各式(复习):

(1)(x+2]x—2)(2)(l+3a)(l—3a)(3)[a+b^a—b)

2、观察以上算式及其运算结果,你发现了什么规律?

3、讨论归纳:平方差公式:(a+b\a-b)=a2-b2

文字叙述:两个数的和与这两个数的差的积等于这两个数的平方差。

二、探究新知:

1、范例分析P102例1至例3

例1、运用平方差公式计算:

(1)(2x+l)(2x-l)(2){x+2y\x-2y)

解:原式=(2x)2—F解:原式=,—(2y)2

=4x2-1=》2_4y2

注意题目中的什么项相当于公式中的a和b,然后正确运用公式就可以了。

例2运用平方差公式进行计算:

(1)(-2x-1j)(-2x+1y)(2)(-4a-既―4a+/?)(3)(y+2)(y-2)(y2+4)

解:(1)(—2x-」y)(—2x+』y)=(_2x)2-dy)2=4,一工/

2224-

(2)(-4a-b\-4a+b)=(-4a)2-b2=16a2-b2

(3)(y+2)(y-2)(y2+4)=(y2-4)(y2+4)=(y2)2-42=y4-16

例3运用平方差公式计算:102X98

解:102X98

=(100+2)(100-2)

=1002-22

=10000-4

=9996

三、小结与练习

1、练习P103练习题1至3题

2、小结:平方差公式:(”+人)(。—的几何意义如图所示

使用公式时,应注意两个项中,有一个项符号是相同的,另一个项符号相反

的,才能使用这个公式。

四、作业:P107习题4.3A组第1题

思考题:若x?-丁=12,x+y=6,求r和y的值。

后记:

2.2.2完全平方公式(1)

教学目标:1、经历探索完全平方公式的过程,进一步发展学生的符号感和

推理能力;2、会推导完全平方公式,并能运用公式进行简单的计算;3、了解完

全平方公式的几何意义。

教学重点:1、弄清完全平方公式的来源及其结构特点,能用自己的语言说

明公式及其特点;2、会用完全平方公式进行运算。

教学难点:会用完全平方公式进行运算

教学方法:探索讨论、归纳总结。

教学过程:

一、探究新知

1、怎样快速地计算(2x+y>呢?

2、我们已经会计算(a+0)2=02+20。+〃,对于上式,能否利用这个公式

进行计算呢?

3、比较(a+A)?=ci~+2♦a•Z?+b~

(2x+y)?=(2x)2,1_2•(2x)•y+y2

启发学生注意观察,公式中的2x、y相当于公式中的a、bo

4、利用公式也可计算(2x—y)2=(2x)2+2•(2x)•(―y)+(—y)2

=4x2—4xy+y2

5、归纳完全平方公式:(。+6)2=/(0-。)2=。2—2^0+02

两个公式合写成一个公式:(a±b)2=a2±2ab+b2

两数和(或差)的平方,等于它们的平方的和,加上(或减去)它们的积的2倍。

6、完全平方公式的几何意义:

(按教材讲解,开与出应用公式的步骤)

例2运用完全平方公式计算:

(1)(-X+1)2⑵(-2x-3)2

(按教材讲解,并写出应用公式的步骤,特别要注意符号,第1小题可以看

作-X与1的和的平方,也可以看作是(1-x)2再进行计算。第2小题可以看作是

-2x与-3的和的平方,也可以看作是-2x减去3的平方,同学们可任意选择使

用的公式)

二、小结与练习

1、练习P105练习1、2

2、小结

三、布置作业P108A组第3题的1至3小题

后记:

2.2.2完全平方公式(2)

教学目标:1、较熟练地运用完全平方公式进行计算;2、了解三个数的和的

平方公式的推导过程,培养学生推理的能力。3、能正确地根据题目的要求选择不

同的乘法公式进行运算。

教学重点:1、完全平方公式的运用。

教学难点:正确选择完全平方公式进行运算。

教学方法:探索讨论、归纳总结。

教学过程:

一、乘法公式复习

1、平方差公式:(a+))(a—份=a?—力?

2、完全平方公式:(a+b)2=/+2。人+。2(a-/?)?="-2。人+62

3、多项式与多项式相乘的运算方法。

4、说一说:(1)3-与2与g—“)2有什么关系?

(2)(a+份2与(一口―力2有什么关系

二、乘法公式的运用

例1运用完全平方公式计算:

(1)1042(2)1982

分析:关键正确选择乘法公式

解:(1)1042=(100+4)2

=10tf+2xl00x4+42

=10000+800+16

=10816

(2)196=(200-2)2

=20tf-2x200x2+22

=40000-800+4

=39204

例2、运用完全平方公式计算:

(1)(a+b+c)2(2)直接利用第(1)题的结论计算:(2x-3y+z)2

解:(1)(«+/?+C)2=[(<2+Z?)+c]2

=(a+Z?)2+2(a+b)c+c2

=a""+2ab+b~+2ac+2bc+c-

=ci~+b~+c~+2ab+2ac+2bc

启发学生认真观察上述公式,并能自己归纳它的特点。

(2)小题中的2x相当于公式中的a,3y相当于公式中的b,z相当于公式中的c0

解:(2)(2x—3y+z)~—[2x+(-3y)+z]~

=(2x)2+(-3y)2+z2+2(2x)(-3y)+2(2x)z+2(-3y)z

=4x2+9y2+z2—12xy+4xz-6yz

一、小结与练习

1、练习P105的练习第3题

2、小结

二、布置作业

运用乘法公式计算:

(1)9.982(2)100^

(3)(x+y-z)2(4)(2a-b+3c)2

后记;

2.2.3运用乘法公式进行计算

教学目标:1、熟练地运用乘法公式进行计算;2、能正确地根据题目的要

求选择不同的乘法公式进行运算。

教学重点:正确选择乘法公式进行运算。

教学难点:综合运用平方差和完全平方公式进行多项式的计算。

教学方法:范例分析、探索讨论、归纳总结。

教学过程:

一、复习乘法公式

1、平方差公式:(a+/?)(a—Z?)=/—〃

2、完全平方公式:(a+〃)2="+2a0+〃

(a一份2=a2-2ab+b2

3、三个数的和的平方公式:(〃+b+c)2==〃+〃+/+2ah+2ac+2hc

4、运用乘法公式进行计算:

(1)(-a-b^a—b)(2)(—a—b^a+b)

(3)(x+lXx2+l)(x-l)

二、范例分析P106的例1、例2

例1运用乘法公式计算:

(1)(a+b)2-[a-b)2(2)(a+b)2+(a-b)2

解:(1)(a+b)2-(a-b^

=[(a+〃)+(〃-Z?)]+——

=(2a)•(2b)=2ab

想一想:这道题你还能用什么方法解答?

(2)(a+b)2+(ci—Z?)2

—+2^z/?+b~)+(。~—2QZ?+b~)

=Q2+2ab+b“+Q2—2ab+b-

=2a2+2b2

例2运用乘法公式计算:

(1)(x+y+l)(x+y—1)(2)(a—Z?+l)(a+b—1)

解:(1)(x+y+l)(x+y-1)

=[(x+y)+l][(x+y)-l]

=(x+y)2-I2

=x2+2xy+y2-1

(2)(a—/?+l)(a+Z?—1)

=a2-(Z?-l)2

=a2~(b2-2Z>+1)

=a2-b2+2b

注意灵活运用乘法公式,按要求最好能写出详细的过程。

三、小结与练习

1、练习P107的练习题

2、小结:利用乘法公式可以使多项式的计算更为简便,但必须注意正确

选择乘法公式。

四、布置作业:

P108A组第3题、第4题

后记:

第三章因式分解

3、1多项式的因式分解

教学目标

L,使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反

关系.

2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言

概括能力.

教学重点

1.理解因式分解的意义.

2,识别分解因式与整式乘法的关系.

教学难点.

通过观察,归纳分解因式与整式乘法的关系.

教学.目标

一、创设问题情境,引入新课

计算(a+6)(a—6)

百一(a+6)(D成立吗?,那么如何去推导呢?

这就是我们即将学习的内容:因式分解的问题.

二、讲授新课

1.讨论6能被2整除吗?你是怎样想的?与同伴交流.

6能被2整除.

因为6=3X2

其中有一个因数为2,所以6能被2整除..6还能被哪些正整数整除?

还能被3整除.

从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形

式.

2.议一议

你能尝试把成一a化成〃个整式的乘积的形式吗?与同伴交流.

观察第一x与六一1这两个代数式.

3.做一做

(1)计算,下列各式:

①(研4)(加-4)=;②(y-3)J;

③3x(x-1)=.;④m.(a+Mc)=;

⑤a(a+1)(a—1)=.

(2)根据上面的算式填空:

①3*—3年()();②加2—16=()();

③ma+mb+mc=()();④/—67+9=()

能分析一下两个题中的形式变换吗?

在(1)中,等号左地都是乘积的形式,等号右边都是多项式;

在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.

在(1)中我们知道从左边推右边是整式乘法;

在(2)中由多项式变成整式乘积的形式是因式分解.

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因

A.想一想

由a(a+1)(a—1)得到a'—a的变形是什么运算?由a—a得到a(a+1)(a

-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

由a(a+1)(a—1)得到a、'-a的变形是整式乘法,由a*—a得到a(a+1)(a

-1)的变形是分解因式,这两科过程正好相反.

由(a+8)(a—。)=才一下可知,左边是整式乘法,右边是一个多项式;由4

~b2=(a+A)(a—b)来看,左边是一个多项式,右。边是整式的乘积形式,所以这

两个过程正好相反.

如:(1)勿(a+b^-.c')-ma^mb^mcr(2)ma+mb^mc=m(a+加c)

联系:等式(1)和(2)是同一个多项式的两种不同表现形式.

区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.

等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.

所以,因式分解与整式乘法是互逆方向的变形.

5.例题:下列各式从左到右的变形,哪些是因式分解?

(1)4a(a+26)=4a2+8a/>;

(2)6ax—3axMax(2—x);

(3)a'—4=(a+2)r(a—2)r;

(4)f—3x+2=x(x—3)+2.

(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,,不

是因式分解;

(2)左边是一.个多项式,右边是几个整式的积的形式,因此从左到右的变形是

因式分廨;

(3)和(2)相同,是因式分解;

(4)不是因式分解,左右都是和形式。

例解方程:x2-l=0

.解.把方程左端的多项式因式分解,得

(X-1)(x+1)=0

从而得

rx+l=0或x-l=0,

即X=-l或x=l.

.因此方程的解是X=-1或x=l.

三、课堂练习连一连

解:

x^y2、(x+i)z

xO2x+l)t(3-5x)(3+5x)

xy-y2/\(x+y)G-y)

四.课时小结

本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;

还学习了整式乘法与分解因式的关系是互逆方向的变形.

五、课后作业

六、教学反思:

为什么要因式分解?学生很困惑,它的运用在后阶段才能体会。再有.解一元

二次方程的问题过早提及,不利于教学。

3.2提公因式法

【教学目标】

认知目标:

⑴在具体情境中认识公因式

⑵通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运

用提取公因式法分解因式

能力目标:

⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题

的思想。

⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆

向思想能力。

情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学

习的乐趣和数学的探索性。

【教学重点、难点】

1.教学重点:掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号

法则。

2..教学难点:正确地找出公因式

【教学过程】

㈠创设情境,提出问题

如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是

3.7m,如何计算这块菜园的面积呢?

3.8

列式:3.7X3.8+3.7X6.2(学生思考后列式)

3.有简便算法吗?

------------------=3.7X(3.8+6.2)

3.图8-1

在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:

ma+mb=m(a+b)

利用整式乘法验证:m(a+b)=ma+mb

㈡观察分析,探究新知

让学生观察多项式:ma+mb

(让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,

从而引出新知。)

各项都含有一个公共的因式叫我们把因式m叫做这个多项式各项的公.因式

注意:公因式是一个多项式中每一项都含有的相同的因式。

又如:b是多项式atH?各项的公因式

2xy是多项式4x2y-6xy2z各项的公因式

让学生说出公因式,学生可能会说是2或者是x、y、2x、2y、2xy等,最后一起

确定公因式2xy,让学生初步体会到确定公因式的方法。

㈢独立练习,巩固新知

指出下列各多项式中各项的公因式(以抢答的形式)

⑴ax+ay-a(a)

(2)5x2y3-10x2y(5x2y)

⑶24abe-9a'b'(3ab)

(4)m2n+mnJ(mn)

(5)x(x-y)2-y(x-y)(x-y)

说明:本活动也可以改为寻找公因式游戏如:(根据提供的多项式和整式,寻找出这个多项式

的公因式.)

⑴ax+ay-a⑵Sx'y'TOx2y⑶24abe-92廿⑷n?n+mn'⑸x(x-y)?-y(x-y)

a,x,y5xy,5x2yJ,5x2y3abc,9ab,3abmn,mJn,mnJ

x(x-y),y(x-y),(x-y)

游戏规则:准备好写有整式和多项式的纸牌,学生分为四组,每组选四个同学游戏,

其中3个同学举一组题中的整式牌,第四个根据组员建议寻找出题中的公因式,并说明

理由。

显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可

以由学生讨论总结,然后教师进行归纳)

⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)

⑵字母取各项的相同字母,且各字母的指数取最低次募

根据分配律,可得m(a+b)=ma+mb逆变形,使得到ma+mb的因式分解形式:nia+mb=ni

(a+b)这说明多项式ma+mb各项都含有的公因式可提到括号外面,将多项式ma+mb写

成m(a+b)的形式,这种分解因式的方法叫做提取公因式法。

定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解

的方法叫做提取公因式法。

㈣例题教学,运用新知

例1.把3Pq3+15p*q分解因式

通过上面的练习,学生会比较容易地找出公因式,所以这一步还是让学生来操作。

然后在黑板上正确规范地书写提取公因式法的步骤。事后总结出提取公因式的一般步骤

分两步:第一步:找出公因式;第二步:提取公因式

解:3pq3+15pq=3pqXq2+3pqX5P)=3pq(q2+5p2)

让学生口答:把2/+6x2分解因式

【学生在探究、交流中能获得一些初步概念和技能,但真正达到掌握知识与技能,

还需要教师示范,学生模仿性学习,经过规范化的示范,就能逐步培养学生严谨的思维,

正确的计算能力。】

说明:⑴应特别强调确定公因式的两个条件,以免漏取.

⑵刚开始讲,最好把公因式单独写出。①以显提醒②强调提公因式③强调因式分解

课堂练习:P156Tl

例2.把4x2-8ax+2x分解因式(让学生做,教师下去观察并选择有代表性的解

答。)

学生可能出现的解答:①4x?-8ax+2x=x(4x-8a+2)②4x?-8ax+2x=2(2x/ax+x)

③4x2-8ax+2x=2x(2x-4a)@4x2-8ax+2x=2x(2x-2a+l)

⑤4x?-8ax+2x=2x(2x-8ax+2x)

教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都

是以后学生练习中的常犯错误,接着由教师总结。这样做比教师直接给出可能会更有效。

【先让学生自己动手做,暴露他们的错误,然后再进行点评,加深他们的记忆。】

分析:找出公因式2x,强调多项式中2x=2xXl

解:4x2-8ax+2x=2xX2x-2xX4a+2xXl=2x(2x-4a+l)

说明:当多项式的某一项恰好是公因式时,这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论