专题四 三角函数与解三角形(2020-2024)五年高考《数学》真题分类汇编(解析版)_第1页
专题四 三角函数与解三角形(2020-2024)五年高考《数学》真题分类汇编(解析版)_第2页
专题四 三角函数与解三角形(2020-2024)五年高考《数学》真题分类汇编(解析版)_第3页
专题四 三角函数与解三角形(2020-2024)五年高考《数学》真题分类汇编(解析版)_第4页
专题四 三角函数与解三角形(2020-2024)五年高考《数学》真题分类汇编(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页专题四三角函数与解三角形考点五年考情(2020-2024)命题趋势考点01正弦型函数的图象和性质2021年新课标卷:求单调区间2022年新课标Ⅱ卷:多性质综合考查关于三角函数图像和性质的考查,基本以客观题形式出现,以考查正弦型函数的图像和性质为主,具体地:1.单调性的独立考查;2.周期性、奇偶性、周期性的综合考查;3.结合函数的图像和性质,求解析式(函数值);4.2024年II卷的命题形式,即给出两个函数,综合考查它们的性质、图象关系等,值得关注.考点02由图象(性质)求函数的解析式(函数值)2020年新高考全国I、II卷:由图象求解析式;2022年新高考全国II卷:由图象性质求解析式、函数值;2023年新高考II卷:由图象交点、弦长求解析式、函数值;考点03两个正弦型函数的图像和性质2024年新高考I卷:交点个数2024年新高考II卷:图像与性质考点04由余弦型函数零点个数求参数2023年新高考I卷考点05三角恒等变换--两角和差的三角函数2022年新高考II卷、2024年新高考II卷:条件求值关于三角恒等变换的考查,基本稳定,以“和差倍半”等公式的应用为主.条件求值、化简三角函数式等,客观题形式;在解三角形问题中的应用;适当关注其与平面向量的交汇问题等.考点06三角恒等变换--和差倍(半)的三角函数2021年新高考I卷:二倍角公式和平方关系;2023年新高考I卷:和、差角、二倍角2023年新高考II卷:二倍角(或半角)考点07解三角形--面积问题2020年新高考I、II卷:扇形、三角形;2022年新高考II卷:求面积、边长;2024年新高考I卷:求角、根据面积求边长.关于解三角形问题,命题比较灵活.1.正弦定理、余弦定理的基本应用,求三角形的边、角;2.与边、角计算相结合,考查三角形面积问题;3.与边、角计算相结合,考查三角形周长问题;4.在三角形中引入“第四点”,与高线、中线、角平分线等结合,完成边、角计算;5.以实际问题、数学文化为背景的解三角形问题;6.三角形中最值、范围问题,与基本不等式、函数、导数等知识交汇.考点08解三角形存在性问题2020年新高考I、II卷:结构不完整、是否存在三角形,满足条件;2021年新高考II卷:是否存在正整数,使三角形为钝角三角形.考点09解三角形中的最值、范围问题2022年新高考I卷:求角、边的代数式最值考点10解三角形--三角形中边角计算2021年新高考I卷:涉及“第四点”成比例线段;2023年新课标Ⅰ卷:求角的函数值及边上的高考点11解三角形--周长问题2024年新课标Ⅱ卷:求角、三角形周长.考点01三角函数的图象和性质1.(2021年全国新高考I卷数学试题)下列区间中,函数单调递增的区间是(

)A. B. C. D.【答案】A【分析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数.2.(多选)(2022年新高考全国II卷数学真题)已知函数的图像关于点中心对称,则(

)A.在区间单调递减B.在区间有两个极值点C.直线是曲线的对称轴D.直线是曲线的切线【答案】AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:,所以,,即,又,所以时,,故.对A,当时,,由正弦函数图象知在上是单调递减;对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;对C,当时,,,直线不是对称轴;对D,由得:,解得或,从而得:或,所以函数在点处的切线斜率为,切线方程为:即.故选:AD.考点02由图象求函数的解析式(函数值)3.(2022年新高考全国I卷数学真题)记函数的最小正周期为T.若,且的图象关于点中心对称,则(

)A.1 B. C. D.3【答案】A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所以,,所以.故选:A4.(多选)(2020年新高考I、II卷数学试题)下图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=(

)A. B. C. D.【答案】BC【分析】首先利用周期确定的值,然后确定的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:,则,所以不选A,不妨令,当时,,解得:,即函数的解析式为:.而故选:BC.【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.5.(2023年新课标全国Ⅱ卷数学真题)已知函数,如图A,B是直线与曲线的两个交点,若,则.

【答案】【分析】设,依题可得,,结合的解可得,,从而得到的值,再根据以及,即可得,进而求得.【详解】设,由可得,由可知,或,,由图可知,,即,.因为,所以,即,.所以,所以或,又因为,所以,.故答案为:.考点03两个正弦型函数的图像和性质6.(2024年新课标全国Ⅰ卷数学真题)当时,曲线与的交点个数为(

)A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在上的图象,根据图象即可求解【详解】因为函数的的最小正周期为,函数的最小正周期为,所以在上函数有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C7.(多选)(2024年新课标全国Ⅱ卷数学真题)对于函数和,下列说法中正确的有(

)A.与有相同的零点 B.与有相同的最大值C.与有相同的最小正周期 D.与的图象有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令,解得,即为零点,令,解得,即为零点,显然零点不同,A选项错误;B选项,显然,B选项正确;C选项,根据周期公式,的周期均为,C选项正确;D选项,根据正弦函数的性质的对称轴满足,的对称轴满足,显然图像的对称轴不同,D选项错误.故选:BC考点04由余弦型函数零点个数求参数8.(2023年新课标全国Ⅰ卷数学真题)已知函数在区间有且仅有3个零点,则的取值范围是.【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.考点05三角恒等变换--两角和差的三角函数9.(2022年新高考全国II卷数学真题)若,则(

)A. B.C. D.【答案】C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】[方法一]:直接法由已知得:,即:,即:所以故选:C[方法二]:特殊值排除法解法一:设β=0则sinα+cosα=0,取,排除A,B;再取α=0则sinβ+cosβ=2sinβ,取β,排除D;选C.[方法三]:三角恒等变换所以即故选:C.10.(2024年新课标全国Ⅰ卷数学真题)已知,则(

)A. B. C. D.【答案】A【分析】根据两角和的余弦可求的关系,结合的值可求前者,故可求的值.【详解】因为,所以,而,所以,故即,从而,故,故选:A.11.(2024年新课标全国Ⅱ卷数学真题)已知为第一象限角,为第三象限角,,,则.【答案】【分析】法一:根据两角和与差的正切公式得,再缩小的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得,因为,,则,,又因为,则,,则,则,联立,解得.法二:因为为第一象限角,为第三象限角,则,,,则故答案为:.考点06三角恒等变换--和差倍(半)的三角函数12.(2021年全国新高考I卷数学试题)若,则(

)A. B. C. D.【答案】C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.【详解】将式子进行齐次化处理得:.故选:C.【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.13.(2023年新课标全国Ⅰ卷数学真题)已知,则(

).A. B. C. D.【答案】B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.【详解】因为,而,因此,则,所以.故选:B14.(2023年新课标全国Ⅱ卷数学真题)已知为锐角,,则(

).A. B. C. D.【答案】D【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为,而为锐角,解得:.故选:D.考点07解三角形--面积问题15.(2020年新高考I、II卷数学试题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为cm2.【答案】【分析】利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设,由题意,,所以,因为,所以,因为,所以,因为与圆弧相切于点,所以,即为等腰直角三角形;在直角中,,,因为,所以,解得;等腰直角的面积为;扇形的面积,所以阴影部分的面积为.故答案为:.16.(2022年新高考全国II卷数学真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.(1)求的面积;(2)若,求b.【答案】(1)(2)【分析】(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;(2)由正弦定理得,即可求解.【详解】(1)由题意得,则,即,由余弦定理得,整理得,则,又,则,,则;(2)由正弦定理得:,则,则,.17.(2024年新课标全国Ⅰ卷数学真题)记的内角A、B、C的对边分别为a,b,c,已知,(1)求B;(2)若的面积为,求c.【答案】(1)(2)【分析】(1)由余弦定理、平方关系依次求出,最后结合已知得的值即可;(2)首先求出,然后由正弦定理可将均用含有的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有,对比已知,可得,因为,所以,从而,又因为,即,注意到,所以.(2)由(1)可得,,,从而,,而,由正弦定理有,从而,由三角形面积公式可知,的面积可表示为,由已知的面积为,可得,所以.考点08解三角形存在性问题18.(2020年新高考I、II卷数学试题)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________?注:如果选择多个条件分别解答,按第一个解答计分.【答案】详见解析【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.【详解】[方法一]【最优解】:余弦定理由可得:,不妨设,则:,即.若选择条件①:据此可得:,,此时.若选择条件②:据此可得:,则:,此时:,则:.若选择条件③:可得,,与条件矛盾,则问题中的三角形不存在.[方法二]:正弦定理由,得.由,得,即,得.由于,得.所以.若选择条件①:由,得,得.解得.所以,选条件①时问题中的三角形存在,此时.若选择条件②:由,得,解得,则.由,得,得.所以,选条件②时问题中的三角形存在,此时.若选择条件③:由于与矛盾,所以,问题中的三角形不存在.【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出.19.(2021年全国新高考II卷数学试题)在中,角、、所对的边长分别为、、,,..(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在,且.【分析】(1)由正弦定理可得出,结合已知条件求出的值,进一步可求得、的值,利用余弦定理以及同角三角函数的基本关系求出,再利用三角形的面积公式可求得结果;(2)分析可知,角为钝角,由结合三角形三边关系可求得整数的值.【详解】(1)因为,则,则,故,,,所以,为锐角,则,因此,;(2)显然,若为钝角三角形,则为钝角,由余弦定理可得,解得,则,由三角形三边关系可得,可得,,故.考点09解三角形中的最值、范围问题20.(2022年新高考全国I卷数学真题)记的内角A,B,C的对边分别为a,b,c,已知.(1)若,求B;(2)求的最小值.【答案】(1);(2).【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.【详解】(1)因为,即,而,所以;(2)由(1)知,,所以,而,所以,即有,所以所以.当且仅当时取等号,所以的最小值为.考点10解三角形--边角计算21.(2021年全国新高考I卷数学试题)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.【详解】(1)设的外接圆半径为R,由正弦定理,得,因为,所以,即.又因为,所以.(2)[方法一]【最优解】:两次应用余弦定理因为,如图,在中,,①在中,.②由①②得,整理得.又因为,所以,解得或,当时,(舍去).当时,.所以.[方法二]:等面积法和三角形相似如图,已知,则,即,而,即,故有,从而.由,即,即,即,故,即,又,所以,则.[方法三]:正弦定理、余弦定理相结合由(1)知,再由得.在中,由正弦定理得.又,所以,化简得.在中,由正弦定理知,又由,所以.在中,由余弦定理,得.故.[方法四]:构造辅助线利用相似的性质如图,作,交于点E,则.由,得.在中,.在中.因为,所以,整理得.又因为,所以,即或.下同解法1.[方法五]:平面向量基本定理因为,所以.以向量为基底,有.所以,即,又因为,所以.③由余弦定理得,所以④联立③④,得.所以或.下同解法1.[方法六]:建系求解以D为坐标原点,所在直线为x轴,过点D垂直于的直线为y轴,长为单位长度建立直角坐标系,如图所示,则.由(1)知,,所以点B在以D为圆心,3为半径的圆上运动.设,则.⑤由知,,即.⑥联立⑤⑥解得或(舍去),,代入⑥式得,由余弦定理得.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.22.(2023年新课标全国Ⅰ卷数学真题)已知在中,.(1)求;(2)设,求边上的高.【答案】(1)(2)6【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.【详解】(1),,即,又,,,,即,所以,.(2)由(1)知,,由,由正弦定理,,可得,,.23.(2023年新课标全国Ⅱ卷数学真题)记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.【答案】(1);(2).【分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论