2022年山东省青岛市崂山区第三中学数学八上期末调研试题含解析_第1页
2022年山东省青岛市崂山区第三中学数学八上期末调研试题含解析_第2页
2022年山东省青岛市崂山区第三中学数学八上期末调研试题含解析_第3页
2022年山东省青岛市崂山区第三中学数学八上期末调研试题含解析_第4页
2022年山东省青岛市崂山区第三中学数学八上期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.2.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.153.给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的的个数有()A.1个 B.2个 C.3个 D.4个4.如图,已知:,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,若,则的边长为()A.6 B.12 C.16 D.325.计算=().A.6x B. C.30x D.6.如图,在△ABC中,∠A=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分AB,那么∠C的度数为()A.93° B.87° C.91° D.90°7.若分式的值为0,则x的值为()A.-3 B.- C. D.38.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣89.计算()A.5 B.-3 C. D.10.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°二、填空题(每小题3分,共24分)11.图1是小慧在“天猫•双11”活动中购买的一张多档位可调节靠椅.档位调节示意图如图2所示,己知两支脚分米,分米,为上固定连接点,靠背分米.档位为Ⅰ档时,,档位为Ⅱ档时,.当靠椅由Ⅰ档调节为Ⅱ档时,靠背顶端向后靠的水平距离(即)为______分米.12.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a+b的值为_____.13.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著.是《算经十书》中最重要的一部,成于公元一世纪左右.全书总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,其中有一个数学问题“今有垣厚一丈,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?”.译文:“有一堵一丈(旧制长度单位,1丈=10尺=100寸)厚的墙,两只老鼠从两边向中间打洞.大老鼠第一天打一尺,小老鼠也是一尺.大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半.问它们几天可以相逢?”请你用所学数学知识方法给出答案:______________.14.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.15.如图,在中,,点在边上,连接,过点作于点,连接,若,则的面积为________.16.用反证法证明命题“在一个三角形中至少有一个内角小于或等于60°”时,应假设________.17.已知是完全平方式,则__________.18.若边形的每个外角均为,则的值是________.三、解答题(共66分)19.(10分)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?20.(6分)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-5,5),(-2,3).(1)请在图中的网格平面内画出平面直角坐标系xOy;(2)请画出△ABC关于y轴对称的△A1B1C1,并写出顶点A1,B1,C1的坐标(3)请在x轴上求作一点P,使△PB1C的周长最小.请标出点P的位置(保留作图痕迹,不需说明作图方法)21.(6分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.22.(8分)如图所示,四边形是正方形,是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.(1)求证:;(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.23.(8分)如图1,在边长为3的等边中,点从点出发沿射线方向运动,速度为1个单位/秒,同时点从点出发,以相同的速度沿射线方向运动,过点作交射线于点,连接交射线于点.(1)如图1,当时,求运动了多长时间?(2)如图1,当点在线段(不考虑端点)上运动时,是否始终有?请说明理由;(3)如图2,过点作,垂足为,当点在线段(不考虑端点)上时,的长始终等于的一半;如图3,当点运动到的延长线上时,的长是否发生变化?若改变,请说明理由;若不变,求出的长.24.(8分)图①、图②均是6×6的正方形网格,每个小正方形的顶点叫做格点,每个小正方形的边长均为1.(1)在图①中,以格点为端点,画线段MN=.(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为2.25.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(10分)先化简分式,然后从中选取一个你认为合适的整数代入求值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.2、C【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,两式相加,得,4x+4y=32,即2x+2y=1.故选C.3、B【解析】根据三角形全等的判定方法可判断①④正确,②③错误.【详解】解:①两边及其中一边上的中线对应相等的两个三角形全等,所以①正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,如图:△ABC和△ACD,的边AC=AC,BC=CD,高AE=AE,但△ABC和△ACD不全等,故此选项错误;③两边及一角对应相等的两个三角形不一定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确.所以①④两个命题正确.故选B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4、C【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=,得出△A1B1A2的边长为,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.【详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=,

∴△A1B1A2的边长为,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=+=1,

∴△A2B2A3的边长为1,

同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.5、B【解析】根据分式的性质,分子分母约去6x即可得出答案.【详解】解:=,故选B.【点睛】此题考查了分式的性质,熟练掌握分式的性质是解题的关键.6、B【分析】根据垂直平分线性质可得AD=BD,于是∠ABD=∠A=31°,再根据角平分线的性质可得∠ABC=2×31°=62°,最后用三角形内角和定理解答即可.【详解】解:∵DE垂直平分AB,∴AD=BD,

∴∠ABD=∠A,

∵∠A=31°,∴∠ABD=31°,∵BD平分∠ABC,

∴∠ABC=2×31°=62°,

∴∠C=180°-62°-31°=87°,

故选:B.【点睛】此题考查线段垂直平分线的问题,关键是根据垂直平分线和角平分线的性质解答.7、D【分析】根据分式值为的条件进行列式,再解方程和不等式即可得解.【详解】解:∵分式的值为∴∴.故选:D【点睛】本题考查了分式值为的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键.8、D【分析】直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【详解】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴OA·(OB+OC)=12,即×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.【点睛】本题考查了一次函数的应用,正确理解题意,能够画出简图是解题的关键.9、A【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】故选:A【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.10、D【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】如图,作AN⊥BC,交PO于G点,延长GO,交DE于H,交D’F于M,根据等腰三角形的性质得到NC的长,故得到cos∠ABN的值,根据题意知GO∥BC,DO∥AB,可得到cos∠DOH=cos∠ABN,根据即可得到OH的长,又,可得∠D’OM=∠OAG,再求出cos∠OAG=即可求出OM,故可得到EF的长.【详解】如图,作AN⊥BC,交PO于G点,延长GO,交DE于H,交D’F于M,∵,,∴BN=CN=6,AN=∴cos∠ABN=,根据题意得GO∥BC,DO∥AB,∴∠DOH=∠APG=∠ABG∴cos∠DOH=cos∠ABN∴cos∠DOH==∴OH=6,由,∴∠AOG+∠D’OM=90°,又∠AOG+∠OAG=90°∴∠D’OM=∠OAG,∵cos∠OAG==∴cos∠D’OM==∴OM=8∴HM=1,则EF=1,故答案为:1.【点睛】此题主要考查解直角三角形,解题的关键是根据题意构造直角三角形,利用三角函数的定义进行求解.12、1【分析】根据点A、A1的坐标得到平移的规律,即可求出点B平移后的点B1的坐标,由此得到答案.【详解】解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(1,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,1+1=b,∴a+b=1+2=1.故答案为:1.【点睛】此题考查点平移的规律:纵坐标上加下减,横坐标左减右加,正确掌握规律是解题的关键.13、天【分析】算出前四天累计所打的墙厚,得出相逢时间在第四天,设第四天,大老鼠打x尺,小老鼠打尺,得出方程,解出x,从而得出第四天内进行的天数,再加上前3天的时间,即可得出结果.【详解】解:根据题意可得:∵墙厚:1丈=10尺,第一天:大老鼠打1尺,小老鼠打1尺,累计共2尺,第二天:大老鼠打2尺,小老鼠打尺,累计共尺,第三天:大老鼠打4尺,小老鼠打尺,累计共尺,第四天:大老鼠打8尺,小老鼠打尺,累计共尺,故在第四天相逢,设第四天,大老鼠打x尺,小老鼠打尺,则,解得:x=,故第四天进行了天,∴天,答:它们天可以相逢.【点睛】本题考查了一元一次方程的应用,解题时要理解情景中的意思,仔细算出每一步的量,最后不要忘记加上前三天的时间.14、或【分析】分∠A为顶角和底角两类进行讨论,计算出其他角的度数,根据特征值k的定义计算即可.【详解】当∠A为顶角时,等腰三角形的两底角为,∴特征值k=;当∠A为底角时,等腰三角形的顶角为,∴特征值k=.故答案为:或【点睛】本题考查了等腰三角形的分类,等腰三角形的分类讨论是解题中易错点.一般可以考虑从角或边两类进行讨论.15、1【分析】如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题.【详解】如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠ABC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,∴S△ADC=×4×4=1.故答案为1.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16、在一个三角形中三个角都大于60°【分析】根据反证法的第一步是假设结论不成立进行解答即可.【详解】由反证法的一般步骤,第一步是假设命题的结论不成立,所以应假设在一个三角形中三个角都大于60°,故答案为:在一个三角形中三个角都大于60°.【点睛】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.17、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.18、【解析】用360°除以每一个外角的度数求出边数即可【详解】360°÷120°=3故答案为3【点睛】此题考查多边形的内角与外角,难度不大三、解答题(共66分)19、(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.20、(1)见解析;(2)A1(5,5)B1(3,3)C1(2,3),见解析;(3)见解析。P点坐标(,0)【解析】(1)根据平面直角坐标系中点的平移规律,解决即可.(2)根据关于y轴对称的图形的对应点的坐标特征,找出对应点A1,B1,C1连线即可.(3)最短路径问题,找到C1关于x轴对称的对应点C2,连接C1C2,与x轴的交点即为P点.【详解】解:(1)如图所示(2)如图所示A1(5,5)B1(3,3)C1(2,3)(3)如图所示∵C(-2,3),B2(3,-1),

∴直线CB2的解析式为y=-x+令y=0,解得x=∴P点坐标(,,0).【点睛】本题考查平面坐标系中点的坐标平移规律,关于y轴对称的对应点的坐标特征,即最短路径问题,解决本题的关键是熟练掌握坐标平移规律.21、(1)证明见解析;(2).【分析】(1)先求出,根据30°所对的直角边是斜边的一半,可得,从而得出,然后根据等边对等角可得,然后利用外角的性质和等角对等边可证出,再利用等角对等边可得,从而得出,最后利用ASA即可证出;(2)先根据已知条件即可求出BD和CD,从而求出DF,再根据全等三角形的性质即可求出FC和FG,从而求出CG,最后根据30°所对的直角边是斜边的一半即可求出.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,∴,即,∴∵,∴,∴∵,∴,∵,∴,在和中∴;解:(2)∵,∴,∵,∴,∵,∴,∴,∴在中,,,∴.【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和全等三角形的判定及性质,掌握30°所对的直角边是斜边的一半、等边对等角和等角对等边和全等三角形的判定及性质是解决此题的关键.22、(1)详见解析;(2),理由详见解析;(3),理由详见解析【分析】(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在边上截取,连接,证出即可得出答案.【详解】(1)证明:∵,∴,∴;(2)理由如下:如图,取的中点,连接,∵四边形为正方形,∴,∵分别为中点∴,∴又∵∴∴,又∵,平分∴.∴在和中,∴(3).理由如下:如图,在边上截取,连接,∵四边形是正方形,,∴,∴为等腰直角三角形,∵∴,∵平分,,∴,∴,在和中∴,∴.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE≌△EBF.23、(1)运动了1秒;(2)始终有,证明见解析;(3)不变,.【分析】(1)设运动了秒,则,,,根据列方程求解即可;(2)先证明DE=CF,然后根据“ASA”证明,从而可证始终有;(3)根据DE//BC得出∠ADE=∠B=60°,然后再在利用等边三角形的性质得出,再证明,得到,根据可解.【详解】解:(1)设运动了秒,则,,,当时,∵,∴,∴,即,解得,∴运动了1秒.(2)∵,∴,∴是等边三角形,∴∵∴又∵∴,.在与中∴∴;(3)不变.理由:∵,∴,∴是等边三角形,∵,∴,在与中,∴,∴,∴,∴.【点睛】本题主要考查了等边三角形的性质,一元一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论