2022年揭阳市榕城区八年级数学第一学期期末检测模拟试题含解析_第1页
2022年揭阳市榕城区八年级数学第一学期期末检测模拟试题含解析_第2页
2022年揭阳市榕城区八年级数学第一学期期末检测模拟试题含解析_第3页
2022年揭阳市榕城区八年级数学第一学期期末检测模拟试题含解析_第4页
2022年揭阳市榕城区八年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若是完全平方式,则的值为()A. B. C. D.2.在、、、中,最简二次根式的个数为()A.1个 B.2个 C.3个 D.4个3.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-14.若将实数,,,这四个数分别表示在数轴上,则其中可能被如图所示的墨迹覆盖的数是().A. B. C. D.5.意大利文艺复兴时期的著名画家达•芬奇利用两张一样的纸片拼出不一样的“空洞”,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形由两个正方形和两个全等的直角三角形组成.已知六边形的面积为28,.小明将纸片②翻转后拼成如图2所示的图形,其中,则四边形的面积为()A.16 B.20 C.22 D.246.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)7.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④8.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的()倍.A. B. C. D.9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ10.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B. C. D.11.若△ABC三个角的大小满足条件∠A:∠B:∠C=1:1:3,则∠A=()A.30° B.36° C.45° D.60°12.若分式方程去分母后所得整式方程的解不是原分式方程的解,则实数a的取值是()A.4或8 B.4 C.8 D.0或2二、填空题(每题4分,共24分)13.当直线经过第二、三、四象限时,则的取值范围是_____.14.如图,点B、F、C、E在一条直线上,已知BF=CE,AC∥DF,请你添加一个适当的条件______,使得△ABC≌△DEF.15.已知(a-2)2+=0,则3a-2b的值是______.16.使有意义的x的取值范围为______.17.如图,已知,AB=BC,点D是射线AE上的一动点,当BD+CD最短时,的度数是_________.18.当时,分式无意义,则_________.三、解答题(共78分)19.(8分)已知百合酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十⋅一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.20.(8分)如图,在等腰中,AC=AB,∠CAB=90°,E是BC上一点,将E点绕A点逆时针旋转90°到AD,连接DE、CD.(1)求证:;(2)当BC=6,CE=2时,求DE的长.21.(8分)小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.22.(10分)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?23.(10分)先化简再求值:,其中,.24.(10分)甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.25.(12分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.26.(1)解方程:;(2)列分式方程解应用题:用电脑程序控制小型赛车进行比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛.比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差.从赛后数据得知两车的平均速度相差.求“畅想号”的平均速度.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据完全平方公式进行计算即可.【详解】解:,∴m=∴m=故选:D【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.2、A【分析】根据最简二次根式的定义,逐一判断选项,即可得到答案.【详解】∵=,,=,∴、、不是最简二次根式,是最简二次根式,故选A.【点睛】本题主要考查最简二次根式的定义,掌握“被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式”的二次根式是最简二次根式,是解题的关键.3、B【分析】根据一次函数的性质依次分析各项即可.【详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【点睛】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.4、B【分析】根据算术平方根的概念分别估算各个实数的大小,根据题意判断.【详解】<0,2<<3,3<<4,3<<4,∴可能被如图所示的墨迹覆盖的数是,故选:B.【点睛】本题考查的是实数和数轴,算术平方根,正确估算算术平方根的大小是解题的关键.5、B【分析】根据图形及勾股定理的验证得到BC2=BG2+CG2,故四边形的面积等于四边形的面积加上四边形的面积,再根据六边形的面积为28,即可求解.【详解】∵∴可设BG=2a,CG=a,∵六边形的面积为28,∴4a2+a2+=28解得a=2(-2)舍去,根据图形及勾股定理的验证得到BC2=BG2+CG2,∴四边形的面积=四边形的面积加上四边形的面积=4a2+a2=5×4=20故选B.【点睛】此题主要考查勾股定理的几何验证,解题的关键是熟知勾股定理的运用.6、A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).

故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.7、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形,②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,

∴△ABC≌△EAD(SAS),①正确;

∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴,④正确;

又∵△AEC与△DEC同底等高,

∴,

∴,⑤不正确.

若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,

∴③不一定正确;

故正确的为:①②④.故选:D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.8、C【分析】本题可利用工作总量作为相等关系,借助方程解题.【详解】解:设一台插秧机的工作效率为x,一个人工作效率为y.则10my=(m﹣3)x.∴.故选:C.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,工程问题要有“工作效率”,“工作时间”,“工作总量”三个要素,数量关系为:工作效率×工作时间=工作总量.9、D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10、C【分析】设总工程量为1,根据甲单独做需要m天完成,乙单独做需要n天完成,可以求出甲乙每天的工作效率,从而可以得到甲乙合作需要的天数。【详解】设总工程量为1,则甲每天可完成,乙每天可完成,所以甲乙合作每天的工作效率为所以甲、乙合作完成工程需要的天数为故答案选C【点睛】本题考查的是分式应用题,能够根据题意求出甲乙的工作效率是解题的关键。11、B【分析】根据三角形内角和为180º进行计算即可.【详解】∵∠A:∠B:∠C=1:1:3且三角形内角和为180º,∴∠A=.故选:B.【点睛】考查了三角形的内角和定理,解题关键是熟记三角形内角和定理:三角形内角和为180º.12、A【分析】方程的两边都乘以最简公分母,化分式方程为整式方程,求解整式方程,由于整式方程的解不是分式方程的解,即整式方程的解满足最简公分母为0,求出a即可.【详解】解:去分母,得3x﹣a+x=2(x﹣2),整理,得2x=a﹣4,解得x=当x(x﹣2)=0时,x=0或x=2,当x=0时,=0,所以a=4;当x=2时,=2,所以a=1.故选:A.【点睛】本题考查了分式方程、一元二次方程的解法.掌握分式方程产生增根的原因是解决本题的关键.二、填空题(每题4分,共24分)13、.【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数,与对函数图象的影响是解题的关键.14、∠A=∠D(答案不唯一)【解析】试题解析:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).考点:全等三角形的判定.15、1【分析】根据非负数的性质列式求出、b的值,然后代入代数式进行计算即可得解.【详解】∵(-2)2+=2,∴-2=2,b+2=2,解得:=2,b=-2,则3-2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.16、x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.17、【分析】作CO⊥AE于点O,并延长CO,使,通过含30°直角三角形的性质可知是等边三角形,又因为AB=BC,根据等腰三角形三线合一即可得出,则答案可求.【详解】作CO⊥AE于点O,并延长CO,使,则AE是的垂直平分线,此时BD+CD最短∴是等边三角形∵AB=BC故答案为:90°.【点睛】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.18、-1【分析】根据分式无意义的条件是分母为零即可解答.【详解】解:∵当时,分式无意义,∴当时,分母为零,即,解得a=-1,故答案为:-1.【点睛】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.三、解答题(共78分)19、(1)8间,13间(2)(3)不是;三人客房16间,双人客房1间时费用最低,最低费用为5100元.【分析】(1)设三人间有间,双人间有间.注意凡团体入住一律五折优惠,根据①客房人数=50;②住宿费6300列方程组求解;

(2)根据题意,三人间住了人,则双人间住了()人,住宿费=100×三人间的人数+150×双人间的人数;

(3)根据的取值范围及实际情况,运用函数的性质解答.【详解】(1)设三人间有间,双人间有间,

根据题意得:,

解得:,

答:租住了三人间8间,双人间13间;(2)根据题意,三人间住了人,住宿费每人100元,则双人间住了()人,住宿费每人150元,∴;(3)因为,所以随的增大而减小,

故当满足、为整数,且最大时,

即时,住宿费用最低,

此时,

答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.

所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.【点睛】本题考查了二元一次方程组的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.20、(1)见解析;(2)2【分析】(1)根据E点绕A点逆时针旋转90°到AD,可得AD=AE,∠DAE=90°,进而可以证明△ABE≌△ACD;(2)结合(1)△ABE≌△ACD,和等腰三角形的性质,可得∠DCE=90°,再根据勾股定理即可求出DE的长.【详解】(1)证明:∵E点绕A点逆时针旋转90°到AD,∴AD=AE,∠DAE=90°,∵∠CAB=90°,∴∠DAC=∠EAB,∵AC=AB,∴△ABE≌△ACD(SAS);(2)∵等腰△ABC中,AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∵△ABE≌△ACD,∴BE=CD,∠DCA=∠ABE=45°,∴∠DCE=90°,∵BC=6,CE=2,∴BE=4=CD,∴DE==2.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的性质,解决本题的关键是综合运用以上知识.21、45【分析】设小明每小时加工零件x个,则小华每小时加工(x-15)个,

根据时间关系,得

【详解】解:设小明每小时加工零件x个,则小华每小时加工(x-15)个

由题意,得

解得:x=45

经检验:x=45是原方程的解,且符合题意.

答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.22、75.【解析】试题分析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.试题解析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.考点:分式方程的应用.23、;1.【分析】先根据完全平方公式、平方差公式、单项式与多项式的乘法法则计算,再合并同类项化简,然后把,代入计算即可.【详解】解:原式当,时原式.【点睛】本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,单项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.24、甲的速度为4.5千米/小时,乙的速度为1千米/小时【分析】设甲的速度为3x千米/小时,则乙的速度为4x千米/小时,根据时间=路程÷速度,结合甲比乙提前20分钟到达目的地即可得出关于x的分式方程,解之即可求出x的值,检验后将其代入3x、4x中即可得出结论.【详解】解:设甲的速度为3x千米/小时,则乙的速度为4x千米/小时,根据题意得:﹣=,解得:x=1.5,经检验,x=1.5是原分式方程的解,∴3x=4.5,4x=1.答:甲的速度为4.5千米/小时,乙的速度为1千米/小时.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论