版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3-随机事件的概率与古典概型1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算.2.理解古典概型,能计算古典概型中简单随机事件的概率.3.理解概率的性质,掌握随机事件概率的运算法则.4.结合实例,会用频率估计概率.CONTENTS010203/目录
知识·逐点夯实考点·分类突破课时·过关检测011.随机事件(1)事件的相关概念
②对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).(2)概率和频率2.事件的关系和运算(1)两个事件的关系和运算事件的关系和运算含义符号表示包含关系A发生导致B发生A⊆B相等关系B⊇A且A⊇BA=B事件的关系和运算含义符号表示并事件(和事件)A与B至少有一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥事件A与B不能同时发生A∩B=⌀互为对立事件A与B有且仅有一个发生A∩B=⌀,A∪B=Ω③不可能事件的概率P(⌀)=0.(3)互斥事件的概率加法公式:如果事件A与事件B互斥,那么P(A∪B)=
P(A)+P(
;(4)对立事件的概率:如果事件A与事件B互为对立事件,那么P(B)=
1-P(A)或P(A)=1-P(
B
)
.(2)概率的几个基本性质①概率的取值范围:
0≤P(A)≤1
;②必然事件的概率P(Ω)=1;0≤P(A)≤1
P(A)+P(B)1-P(A)或P(A)=1-P(B)3.古典概型(1)古典概型的特征(2)古典概型的概率公式
1.判断正误.(正确的画“√”,错误的画“×”)(1)两个事件的和事件是指两个事件同时发生.
(
)答案:(1)×
(2)若A∪B是必然事件,则A与B是对立事件.
(
)(3)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.
(
)答案:(2)×
答案:(3)×2.(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为
(
)
3.(多选)若n(n≥3)个人站成一排,其中不是互斥事件的是
(
)A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:BCD
排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B、C、D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.故选B、C、D.4.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:成绩90分及以上80~89分70~79分60~69分50~59分50分以下人数4217224086528经济学院一年级的学生王小明下学期将选修李老师的高等数学课,用已有的信息估计他得以下分数的概率:(1)90分及以上的概率:
;
答案:(1)0.07
(2)不及格(60分及以上为及格)的概率:
.
答案:(2)0.15.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为
.
解析:因为“抽到的不是一等品”的对立事件是“抽到的是一等品”,且P(A)=0.65,所以“抽到的不是一等品”的概率为1-0.65=0.35.答案:0.35
若事件A1,A2,…,An两两互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
某工厂有四条流水线生产同一种产品,这四条流水线的产量分别占总产量的0.20,0.25,0.3,0.25,这四条流水线的合格率依次为0.95,0.96,0.97,0.98,从出厂产品中任取一件,则恰好抽到不合格的概率是
.
解析:由结论可知:P=0.2×(1-0.95)+0.25×(1-0.96)+0.3×(1-0.97)+0.25×(1-0.98)=0.034.答案:0.03402随机事件关系的判断【例1】
(1)(多选)某人打靶时连续射击两次,设事件A=“只有一次中靶”,B=“两次都中靶”,则下列结论正确的是
(
)A.A⊆BB.A∩B=⌀C.A∪B=“至少一次中靶”D.A与B互为对立事件解析
(1)事件A=“只有一次中靶”,B=“两次都中靶”,所以A,B是互斥不对立事件,所以A、D选项错误,B选项正确.A∪B=“至少一次中靶”,C选项正确.答案
(1)BC
(2)(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、丁4个人,每人一个,则下列说法正确的是
(
)A.事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件B.事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件C.事件“甲分得绿球,乙分得蓝球”的对立事件是“丙分得白球,丁分得红球”
答案
(2)BD|解题技法|事件关系判断的策略(1)判断事件的互斥、对立关系时一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.反之互斥事件是不可能同时发生的事件,但也可以同时不发生;对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生;(2)判断事件的交、并关系时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.也可类比集合的关系和运用Venn图分析事件.
口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是
(
)A.至少有1个红球与至少有1个黑球B.至少有1个红球与都是黑球C.至少有1个红球与至多有1个黑球D.恰有1个红球与恰有2个红球解析:D
对于A,不互斥,如取出2个红球和1个黑球,与至少有1个黑球不是互斥事件,所以A不符合题意;对于B,至少有1个红球与都是黑球不能同时发生,且必有其中1个发生.所以为互斥事件,且为对立事件,所以B不符合题意;对于C,不互斥.如取出2个红球和1个黑球,与至多有1个黑球不是互斥事件,所以C不符合题意;对于D,恰有1个红球与恰有2个红球不能同时发生,所以为互斥事件,但不对立,如恰有3个红球.用频率估计概率【例2】
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
|解题技法|1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
(2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级ABCD频数40202020等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
乙分厂产品等级的频数分布表(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020
由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421
古典概型【例3】
(1)(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为
(
)
答案
(1)D
(2)(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为
.
2.求样本空间中样本点个数的方法(1)枚举法:适合于给定的样本点个数较少且易一一列举出的问题;(2)树状图法:适用于需要分步完成的试验结果.树状图在解决求样本点总数和事件A包含的样本点个数的问题时直观、方便,但画树状图时要注意按照一定的顺序确定分枝,避免造成遗漏或重复;(3)排列、组合法:在求一些较复杂的样本点个数时,可利用排列、组合的知识.1.在一个不透明的容器中有6个小球,其中有4个黄球,2个红球,它们除颜色外完全相同,如果一次随机取出2个球,那么至少有1个红球的概率为(
)
2.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为
.
互斥事件与对立事件的概率【例4】
某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)1张奖券的中奖概率;
(2)1张奖券不中特等奖且不中一等奖的概率.
|解题技法|互斥事件概率的两种求法(1)将所求事件转化成几个彼此互斥事件的和事件,利用互斥事件概率的加法公式求解概率;(2)若将一个较复杂的事件转化为几个彼此互斥事件的和事件时分类太多,而其对立面的分类较少,可考虑先求其对立事件的概率,即运用“正难则反”的思想.常用此方法求“至少”“至多”型事件的概率.
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)至少3人排队等候的概率.解:(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.03
A.至多有1张移动卡B.恰有1张移动卡C.都不是移动卡D.至少有1张移动卡
2.《易经》是中国传统文化中的精髓.如图是易经先天八卦图,每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,这两卦的阳线数目相同的概率为
(
)
3.从集合{1,2,4}中随机抽取一个数a,从集合{2,4,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(2,-1)垂直的概率为
(
)
4.“仁、义、礼、智、信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延伸为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”.将“仁、义、礼、智、信”排成一排,则“仁”排在第一位,且“智、信”相邻的概率为
(
)
5.(多选)下列说法正确的是
(
)A.若事件A与B互斥,则A∪B是必然事件B.《西游记》《三国演义》《水浒传》《红楼梦》是我国四大名著.若在这四大名著中,甲、乙、丙、丁分别任取一本进行阅读,设事件E=“甲取到《红楼梦》”,事件F=“乙取到《红楼梦》”,则E与F是互斥但不对立事件C.掷一枚骰子,记录其向上的点数,记事件A=“向上的点数不大于5”,事件B=“向上的点数为质数”,则B⊆AD.10个产品中有2个次品,从中抽取一个产品检查其质量,则样本空间含有2个样本点解析:BCD
对于A,事件A与B互斥时,A∪B不一定是必然事件,故A错误;对于B,事件E与F不会同时发生,所以E与F是互斥事件,但除了事件E与F之外还有事件“丙取到《红楼梦》”“丁取到《红楼梦》”,所以E与F不是对立事件,故E与F是互斥但不对立事件,故B正确;对于C,事件A={1,2,3,4,5},事件B={2,3,5},所以B包含于A,故C正确;对于D,样本空间Ω={正品,次品},含有2个样本点,故D正确.6.某城市2022年的空气质量状况如下表所示:污染指数T3060100110130140概率P其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2022年空气质量达到良或优的概率为
.
7.将一颗骰子先后抛掷2次,观察向上的点数,两数中至少有一个奇数的概率为
;以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率为
.
8.从(3x+1)5的展开式各项的系数中任取两个,其和为奇数的概率是
.
9.在二行四列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)那样摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为1的概率为
.
10.随机抽取一个年份,对某市该年4月份的天气情况进行统计,结果如下:日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计该市在该天不下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《政治心理学》课程教学大纲
- 2024年出售小吃街摊位合同范本
- 2024年出售风力发电立柱合同范本
- 2024年承接营养土种植合同范本
- 地高辛药物护理
- 2024-2025学年四川省达州市高二上学期11月期中考试数学试题(含答案)
- 冠状动脉造影手术配合
- 团日活动四式教育
- 西部开发省际公路通道银武线十堰至漫川关段水土保持方案报告书
- 【高中数学课件】排列与组合的应用
- 肠易激综合征疗
- 2024天猫男装行业秋冬趋势白皮书
- 运营内控副行长/经理资格认证考试题库(2021版)
- 办公技能竞赛试题
- 2024年绵阳科技城新区事业单位考核公开招聘高层次人才10人(高频重点复习提升训练)共500题附带答案详解
- 韶关市仁化县教育局招聘中小学临聘教师笔试真题2022
- 七年级英语上册(人教版2024)新教材解读课件
- 新大象版六年级上册科学全册知识点 (超全)
- 电力专业数据传输(EPDT)通信系统 空中接口呼叫控制层技术规范 标准编制说明
- 2024年东南亚集装箱班轮运输市场深度研究及预测报告
- 建筑项目安全风险分级管控清单建筑风险分级管控清单(范例)
评论
0/150
提交评论