下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023八年级数学上册第十五章分式15.3分式方程第2课时用分式方程解决实际问题教案(新版)新人教版课题:科目:班级:课时:计划3课时教师:单位:一、课程基本信息1.课程名称:八年级数学——分式方程解决实际问题
2.教学年级和班级:八年级数学一班
3.授课时间:2023年4月10日
4.教学时数:1课时(45分钟)二、核心素养目标本节课旨在培养学生的数学抽象、逻辑推理、数学建模和应用意识等数学核心素养。通过解决实际问题,学生能够理解分式方程的概念和性质,提高用数学语言描述现实世界的能力,锻炼将实际问题转化为数学模型的思维过程,以及应用分式方程解决实际问题的技能。同时,通过小组合作和讨论,培养学生的团队合作精神和沟通能力。三、学情分析八年级的学生在经历了之前数学学习的基础上,对数学知识有了一定的积累,对数学问题有了一定的分析能力。但是,学生在解决实际问题时,往往还存在以下问题:
1.对分式方程的理解不够深入。虽然学生已经学习了分式的知识,但对分式方程的理解还停留在表面,不能很好地将实际问题转化为分式方程。
2.逻辑推理能力有待提高。学生在解决实际问题时,往往不能很好地运用数学逻辑推理,对问题分析不够深入,导致解题思路不清晰。
3.应用能力的不足。学生在解决实际问题时,往往不能将所学的数学知识灵活运用,不能很好地将理论知识和实际问题结合。
4.行为习惯方面,部分学生可能存在上课注意力不集中,参与度不高,课堂练习不够积极主动等问题,这将对课程学习产生影响。
针对以上问题,教师在教学过程中,应注重引导学生深入理解分式方程的概念,通过实例让学生体会分式方程在解决实际问题中的应用,同时,通过练习和讨论,提高学生的逻辑推理能力和应用能力。同时,教师还需要关注学生的行为习惯,通过激励和引导,提高学生的学习积极性和参与度。四、教学方法与策略1.针对学生的学习特点和课程目标,本节课将采用讲授法、案例研究法和项目导向学习法相结合的教学方法。讲授法用于系统地介绍分式方程的概念和解法,案例研究法用于分析实际问题转化为分式方程的过程,项目导向学习法用于培养学生解决实际问题的能力。
2.具体的教学活动设计如下:
a.导入环节:通过生活中的实际问题引导学生思考,激发学生的学习兴趣,并自然过渡到分式方程的学习。
b.新课讲解:在讲解分式方程的概念和解法时,结合具体的案例进行分析,让学生在理解的基础上掌握知识。
c.课堂练习:设计具有梯度的练习题,让学生在实践中巩固知识,提高解题能力。
d.小组讨论:组织学生进行小组讨论,分享解题心得和经验,培养学生团队合作精神和沟通能力。
e.总结环节:通过总结本节课所学内容,帮助学生形成知识体系。
3.在教学过程中,将充分利用PPT、视频、在线工具等多种教学媒体和资源,以直观、生动的方式展示分式方程的解法,增强学生的学习兴趣,提高教学效果。同时,利用在线工具进行实时互动和反馈,及时了解学生的学习情况,为教学提供有力支持。五、教学实施过程1.课前自主探索
-教师活动:设计分式方程相关的预习任务,包括分式方程的定义、解法及其在实际问题中的应用。
-学生活动:学生独立完成预习任务,通过查阅资料或利用网络资源对分式方程有一定的了解。
-教学方法:自主学习法
-教学手段:在线学习平台、教材
-作用和目的:培养学生自主学习的能力,为课堂学习打下基础。
2.课中强化技能
a.导入环节
-教师活动:提出实际问题,引导学生思考如何用数学模型来解决。
-学生活动:尝试分析问题,思考如何转化为数学问题。
-教学方法:问题解决法
-教学手段:PPT展示实际问题
-作用和目的:激发学生兴趣,引导学生进入学习状态。
b.新课讲解
-教师活动:通过PPT讲解分式方程的概念和解法,结合实际案例进行分析。
-学生活动:听讲、记录关键信息,参与课堂讨论。
-教学方法:讲授法、案例研究法
-教学手段:PPT、案例材料
-作用和目的:让学生理解和掌握分式方程的基本概念和解法。
c.课堂练习
-教师活动:提供一系列分式方程练习题,引导学生独立完成。
-学生活动:学生独立解题,小组内交流解题思路。
-教学方法:实践操作法、小组合作法
-教学手段:练习题、小组讨论
-作用和目的:巩固所学知识,提高解题能力。
d.小组讨论
-教师活动:组织学生进行小组讨论,分享解题心得和经验。
-学生活动:小组内讨论,总结解题策略。
-教学方法:小组合作法
-教学手段:无
-作用和目的:培养团队合作精神和沟通能力。
e.总结环节
-教师活动:引导学生总结本节课所学内容,梳理知识体系。
-学生活动:总结个人学习收获,参与课堂总结。
-教学方法:归纳总结法
-教学手段:PPT
-作用和目的:帮助学生形成完整的知识结构。
3.课后拓展应用
-教师活动:布置相关的课后练习,鼓励学生运用所学知识解决实际问题。
-学生活动:完成课后练习,尝试独立解决实际问题。
-教学方法:自主学习法、实践操作法
-教学手段:课后练习题、实际问题材料
-作用和目的:巩固所学知识,提高学生的应用能力。六、学生学习效果1.知识掌握:学生能够熟练掌握分式方程的定义、解法及其应用。通过案例分析和练习题的实践,学生能够理解分式方程在解决实际问题中的重要性,并能够运用所学知识解决相关问题。
2.逻辑推理能力:学生在解决分式方程的过程中,能够运用逻辑推理方法,分析问题、推导解答。通过小组讨论和课堂练习,学生的逻辑思维能力得到锻炼和提高。
3.应用能力:学生能够将所学的分式方程知识应用到实际问题中,灵活运用解题策略,解决实际问题。通过课后拓展应用,学生的知识应用能力得到进一步的培养。
4.团队合作和沟通能力:在小组讨论和合作解题的过程中,学生能够积极参与团队活动,与他人分享解题心得和经验,提高团队合作和沟通能力。
5.自主学习能力:学生能够在课前通过自主探索,对分式方程有一定的了解,为课堂学习打下基础。通过自主学习,学生能够培养独立思考和自主学习的能力。
6.学习兴趣和动力:通过解决实际问题和互动讨论,学生能够感受到数学的实用性和趣味性,提高学习数学的兴趣和动力。七、内容逻辑关系①分式方程的定义与特点
-重点知识点:分式方程的概念、形式以及与其相关的分式和方程的基本概念。
-重点词:分式方程、分式、方程、解等。
-重点句:分式方程是形如a/b=c/d的方程,其中a、b、c、d是表达式,且b和d不为零。
②分式方程的解法
-重点知识点:分式方程的解法,包括去分母、去括号、移项、合并同类项等步骤。
-重点词:去分母、去括号、移项、合并同类项等。
-重点句:解分式方程的一般步骤是先去分母,然后去括号,接着移项,最后合并同类项求解。
③分式方程在实际问题中的应用
-重点知识点:如何将实际问题转化为分式方程,并运用解法求解。
-重点词:实际问题、转化、求解等。
-重点句:解决实际问题时,首先要将问题转化为数学模型,然后运用分式方程的解法求解。
板书设计:
1.分式方程的定义与特点
-形式:a/b=c/d
-概念:分式方程、分式、方程、解等
2.分式方程的解法
-步骤:去分母、去括号、移项、合并同类项
3.分式方程在实际问题中的应用
-转化:实际问题→数学模型
-求解:运用分式方程的解法求解八、课堂小结,当堂检测课堂小结:
本节课我们学习了分式方程的定义、解法及其在实际问题中的应用。通过案例分析和练习题的实践,我们深入理解了分式方程的概念和解法步骤,并能够运用所学知识解决相关问题。
1.分式方程的定义与特点:分式方程是形如a/b=c/d的方程,其中a、b、c、d是表达式,且b和d不为零。分式方程具有分式的形式,包含未知数和常数。
2.分式方程的解法:解分式方程的一般步骤是先去分母,然后去括号,接着移项,最后合并同类项求解。在这个过程中,我们需要运用逻辑推理和运算技巧。
3.分式方程在实际问题中的应用:解决实际问题时,我们首先要将问题转化为数学模型,然后运用分式方程的解法求解。通过实际问题的解决,我们能够更好地理解和运用分式方程的知识。
当堂检测:
1.分式方程的定义与特点:请给出分式方程的一般形式。
2.分式方程的解法:请解以下分式方程:2x/(x+1)=3/(x-1)。
3.分式方程在实际问题中的应用:某商店进行打折活动,原价为100元的商品打8折后的价格为80元。请用分式方程表示这个关系,并求解。
答案与解析:
1.分式方程的一般形式是a/b=c/d,其中a、b、c、d是表达式,且b和d不为零。
2.解分式方程2x/(x+1)=3/(x-1)的步骤如下:
-去分母:将方程两边乘以(x+1)(x-1)得2x(x-1)=3(x+1)
-去括号:得2x^2-2x=3x+3
-移项:将含未知数的项移到方程的一边,得2x^2-2x-3x-3=0
-合并同类项:得2x^2-5x-3=0
-求解:解得x=3或x=-1/2
3.分式方程的应用问题解析:
设原价为100元的商品打8折后的价格为80元,即原价的80%。
设原价为x元,则打8折后的价格为0.8x。
根据题意,有0.8x=80。
解得x=100。
所以原价为100元。重点题型整理1.题型一:分式方程的定义与特点
题目:判断下列哪个式子是分式方程?并说明理由。
a)2x+3=7
b)x/2+3/4=1
c)3x-5=2(x+1)
d)4/a=3/b
答案与解析:
a)不是分式方程,因为它不包含分式。
b)是分式方程,因为它包含分式x/2和3/4。
c)不是分式方程,因为它不包含分式。
d)是分式方程,因为它包含分式4/a和3/b。
2.题型二:分式方程的解法
题目:解分式方程3x/(x-1)=4/(x+1)。
答案与解析:
去分母:将方程两边乘以(x-1)(x+1)得3x(x+1)=4(x-1)
去括号:得3x^2+3x=4x-4
移项:将含未知数的项移到方程的一边,得3x^2+3x-4x+4=0
合并同类项:得3x^2-x+4=0
求解:解得x=-1/3或x=4/3。
3.题型三:分式方程在实际问题中的应用
题目:一个长方形的长是宽的2倍,如果长方形的周长是36厘米,求长方形的面积。
答案与解析:
设长方形的宽为x厘米,则长为2x厘米。
根据周长的定义,有2(长+宽)=36。
代入长和宽的关系,得2(2x+x)=36。
化简得6x=36。
解得x=6。
所以长方形的宽为6厘米,长为12厘米。
长方形的面积为长×宽=12×6=72平方厘米。
4.题型四:分式方程的简化
题目:简化分式方程5x/(x+3)-3/(x-1)=2。
答案与解析:
去分母:将方程两边乘以(x+3)(x-1)得5x(x-1)-3(x+3)=2(x+3)(x-1)
去括号:得5x^2-5x-3x-9=2x^2+6x-6
移项:将含未知数的项移到方程的一边,得5x^2-5x-3x-9-2x^2-6x+6=0
合并同类项:得3x^2-14x+3=0
求解:解得x=(14±√133)/6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学模拟考试试卷B卷含答案
- 2024年度山西省高校教师资格证之高等教育法规考前练习题及答案
- 历史教师培训心得体会
- 2024年度茶叶批发销售协议范本
- 2024年私人贷款协议样式
- 房产买卖居间服务协议2024全攻略
- 2024年家庭装修协议
- 2024游乐场设施租赁协议模板
- 2024年居间合作项目协议精简
- 2024年跨境资本贷款协议示例
- 红楼梦81至100回读书笔记3篇
- 学术毕业论文的选题及写作课件
- 新中国成立以来反腐倡廉历史进程回顾课件
- 希沃优化大师操作培训
- 《水稻高产栽培技术》全套课件(完整版)
- 威布尔分布课件
- 卡尺的使用培训课件
- 务工证明excel模板
- 中外警匪片比较课件
- 第九章稳定化聚合物材料及可降解聚合物材料的设计与应用(高分子材料)--课件1
- 液压修井解决方案介绍
评论
0/150
提交评论