版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度2.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是()A. B. C. D.3.如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A. B. C. D.4.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A. B.C. D.5.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.26.如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数的图象位置可能是()A. B. C. D.7.若一次函数y=ax+b(a≠0)的图像与x轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为()A.直线x=1 B.直线x=-1 C.直线x=2 D.直线x=-28.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.129.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是()A.2 B.4 C.-2 D.-410.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.二、填空题(每小题3分,共24分)11.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.12.如图,在Rt△ABC中,∠ACB=90°,tanB=则斜坡AB的坡度为____________13.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=(k≠0)图象上的一点,过点P作PA⊥x轴于点A,点B为AO的中点若△PAB的面积为3,则k的值为_____.14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.16.如图等边三角形内接于,若的半径为1,则图中阴影部分的面积等于_________.17.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.18.函数y=—(x-1)2+2图像上有两点A(3,y1)、B(—4,y,),则y1______y2(填“<”、“>”或“=”).三、解答题(共66分)19.(10分)如图,已知线段与点,若在线段上存在点,满足,则称点为线段的“限距点”.(1)如图,在平面直角坐标系中,若点.①在中,是线段的“限距点”的是;②点是直线上一点,若点是线段的“限距点”,请求出点横坐标的取值范围.(2)在平面直角坐标系中,点,直线与轴交于点,与轴交于点.若线段上存在线段的“限距点”,请求出的取值范围.20.(6分)如图,在中,,点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.①求证:;②如图3,将沿翻折得,连接,直接写出的最小值.21.(6分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.22.(8分)已知关于的方程;(1)当为何值时,方程有两个不相等的实数根;(2)若为满足(1)的最小正整数,求此时方程的两个根,.23.(8分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.24.(8分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.(10分)现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(Ⅰ)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(Ⅱ)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.26.(10分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.2、D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,
∴两次摸到的球的颜色相同的概率为:.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.3、D【分析】根据旋转变换的性质求出、,根据勾股定理计算即可.【详解】解:由旋转变换的性质可知,,∴正方形的面积=四边形的面积,∴,,∴,,∴.故选D.【点睛】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4、A【解析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1.故选B.考点:二次函数图象与几何变换5、D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是方差是故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.6、A【解析】先根据一次函数的性质判断出k取值,再根据反比例函数的性质判断出k的取值,二者一致的即为正确答案.【详解】当k>0时,有y=kx+3过一、二、三象限,反比例函数的过一、三象限,A正确;由函数y=kx+3过点(0,3),可排除B、C;当k<0时,y=kx+3过一、二、四象限,反比例函数的过一、三象限,排除D.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.7、A【分析】先将(2,0)代入一次函数解析式y=ax+b,得到2a+b=0,即b=-2a,再根据抛物线y=ax2+bx+c的对称轴为直线x=即可求解.【详解】解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(2,0),
∴2a+b=0,即b=-2a,
∴抛物线y=ax2+bx+c的对称轴为直线x=.
故选:A.【点睛】本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:
点在函数的图象上,则点的坐标满足函数的解析式,二次函数y=ax2+bx+c的对称轴为直线x=.8、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.9、A【解析】由题意得:,又,则k的值即可求出.【详解】设,
直线与双曲线交于A、B两点,
,
,,
,
,则.
又由于反比例函数位于一三象限,,故.
故选A.【点睛】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.10、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.二、填空题(每小题3分,共24分)11、(2,0),(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标.【详解】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵点A2在双曲线上,
∴(2+a)•a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴点B2的坐标为(2,0);
作A3D⊥x轴于点D,设B2D=b,则A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵点A3在双曲线y=(x>0)上,
∴(2+b)•b=,
解得b=-+,或b=--(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴点B3的坐标为(2,0);
同理可得点B4的坐标为(2,0)即(4,0);
以此类推…,
∴点Bn的坐标为(2,0),
故答案为(2,0),(2,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.12、【分析】由题意直接利用坡度的定义进行分析计算即可得出答案.【详解】解:∵在Rt△ABC中,∠ACB=90°,tanB=,∴∠B=60°,∴∠A=30°,∴斜坡AB的坡度为:tanA=.故答案为:.【点睛】本题主要考查解直角三角形的应用,熟练掌握坡度的定义以及特殊三角函数值是解题的关键.13、-1.【分析】根据反比例函数系数k的几何意义得出的面积,再根据线段中点的性质可知,最后根据双曲线所在的象限即可求出k的值.【详解】如图,连接OP∵点B为AO的中点,的面积为3由反比例函数的几何意义得则,即又由反比例函数图象的性质可知则解得故答案为:.【点睛】本题考查了反比例函数的图象与性质、线段的中点,熟记反比例函数的性质是解题关键.14、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.15、这个“果圆”被y轴截得的线段CD的长3+.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【详解】连接AC,BC,∵抛物线的解析式为y=(x-1)2-4,∴点D的坐标为(0,−3),∴OD的长为3,设y=0,则0=(x-1)2-4,解得:x=−1或3,∴A(−1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO⋅BO=3,∴CO=,∴CD=CO+OD=3+,故答案为3+.16、【分析】如图(见解析),连接OC,根据圆的内接三角形和等边三角形的性质可得,的面积等于的面积、以及的度数,从而可得阴影部分的面积等于钝角对应的扇形面积.【详解】如图,连接OC由圆的内接三角形得,点O为垂直平分线的交点又因是等边三角形,则其垂直平分线的交点与角平分线的交点重合,且点O到AB和AC的距离相等则故答案为:.【点睛】本题考查了圆的内接三角形的性质、等边三角形的性质、扇形面积公式,根据等边三角形的性质得出的面积等于的面积是解题关键.17、【分析】由图象,推得AD=7,DC+BC=6,经过解直角三角形求得BC、DC及BD.再由勾股定理求AB.【详解】过点B作BD⊥AC于点D由图象可知,BM最小时,点M到达D点.则AD=7点M从点D到B路程为13-7=6在△DBC中,∠C=60°∴CD=2,BC=4则BD=2∴AB=故答案为:【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键.18、>【分析】由题意可知二次函数的解析式,且已知A、B两点的横坐标,将两点横坐标分别代入二次函数解析式求出y1、y1的值,再比较大小即可.【详解】解:把A(3,y1)、B(-4,y1)代入二次函数y=—(x-1)1+1得,y1=-(3-1)1+1=-1;y1=-(-4-1)1+1=-13,所以y1>y1.故答案为>.【点睛】本题考查二次函数图象上点的坐标相关特征,熟练掌握二次函数图象上点的坐标符合函数解析式是解题关键.三、解答题(共66分)19、(1)①;②或;(2).【分析】(1)①已知AB=2,根据勾股定理,结合两点之间的距离公式,即可得到答案;②根据题意,作出“限距点”的轨迹,结合图形,即可得到答案;(2)结合(1)的轨迹,作出图像,可分为两种情况进行分析,分别求出两个临界点,即可求出t的取值范围.【详解】(1)①根据题意,如图:∵点,∴AB=2,∵点C为(0,2),点O(0,0)在AB上,∴OC=AB=2;∵E为,点O(0,0)在AB上,∴OE=;∵点D()到点A的距离最短,为;∴线段的“限距点”的是点C、E;故答案为:C、E.②由题意直线上满足线段的“限距点”的范围,如图所示.∴点在线段AN和DM两条线段上(包括端点),∵AM=AB=2,设点M的坐标为:(n,n)(n<0),∵,∴,∴,易知,同理点横坐标的取值范围为:或.(2)∵与x轴交于点M,与y轴交于点N,∴令y=0,得;令x=0,得,∴点M为:(),点N为:(0,);如图所示,此时点M到线段AB的距离为2,∴,∴;如图所示,AE=AB=2,∵∠EMG=∠EAF=30°,∴,∵,∴,,∴,∵,AG=1,∴解得:;综上所述:的取值范围为:.【点睛】本题考查了解直角三角形的应用,利用勾股定理解直角三角形,一次函数的图像与性质,一次函数的动点问题,以及新定义的理解,解题的关键是正确作出辅助图形,利用数形结合的思想,以及临界点的思想进行解题,本题难度较大,分析题意一定要仔细.20、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CF⊥AB,垂足为F,由题意可得∠B=30°,用正切函数可求CF的长,再用正弦函数即可求解;(2)如图(2)1:延长BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证△EDF≌△FD'B得BD'=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CF⊥AB,垂足为F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等边的边长为;①如图(2)1:延长BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四边形DGFC是平行四边形,又∵∠ACF=90°∴四边形DGFC是矩形,∴②)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴当BD'取最小值时,有最小值当CD⊥AB时,BD'min=AC,设CDmin=a,则AC=BC=2a,AB=2a的最小值为;【点睛】本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.21、(1)A的坐标为(,3);(2)x≥.【解析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.22、(1)且;(2),.【分析】(1)由方程有两个不相等的实数根,可得△=b2-4ac>0,继而求得m的取值范围;(2)因为最小正整数为1,所以把m=1代入方程。解方程即可解答.【详解】解:(1)∵原方程有两个不相等的实数根∴,即∴又∵原方程为一元二次方程,∴综上,的取值范围是且;∵最小正整数,∴m=1,把m=1代入方程得:,解得:,.【点睛】本题考查根的判别式、解一元二次方程,解题关键是熟练掌握根的判别式.23、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【点睛】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形,掌握菱形的定义及性质、平行线、角平行线和等腰三角形的关系和用锐角三角函数解直角三角形是解决此题的关键.24、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,点P的坐标为(,3)或(﹣3+3,12﹣6).【分析】(1)将点B,C的坐标代入即可;(2)①求出顶点坐标,直线MB的解析式,由PD⊥x轴且知P(m,﹣2m+6),即可用含m的代数式表示出S;②在①的情况下,将S与m的关系式化为顶点式,由二次函数的图象及性质即可写出点P的坐标;(3)分情况讨论,如图2﹣1,当时,推出,则点P纵坐标为3,即可写出点P坐标;如图2﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新建公寓居住权使用权转让协议书
- 托管简易仓库租赁合同
- 乡村资产管理之道
- 临时物业管理人员招聘合同
- 2025事业单位聘用劳动合同书范本
- 住宅小区钢筋施工协议
- 模具合作合同样本
- 2025防腐工程承包合同范本
- 2025知识产权合同音乐著作权授权协议
- 2025铲车台班合同
- 第五单元第四节 全球发展与合作 教学实录-2024-2025学年粤人版地理七年级上册
- 期末综合试卷(试题)2024-2025学年人教版数学五年级上册(含答案)
- 投资控股合同
- 2024-2025学年上学期武汉小学语文六年级期末模拟试卷
- 2023-2024学年贵州省贵阳外国语实验中学八年级(上)期末数学试卷(含答案)
- 2025版国家开放大学专本科《计算机应用基础》一平台在线形考任务 (形考作业一至三)试题及答案
- 古代汉语专题-003-国开机考复习资料
- 《争做文明班级》课件
- 辽宁省大连市沙河口区2022-2023学年八年级上学期物理期末试卷(含答案)
- 【MOOC】信号与系统-西北工业大学 中国大学慕课MOOC答案
- 《半导体的基本知识》教学设计
评论
0/150
提交评论