




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.2.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2019的值为()A.0 B.﹣1 C.1 D.(3)20193.如图,抛物线的对称轴为直线,与轴的个交点坐标为,,其部分图象如图所示,下列结论:①;②方程的两个根是,;③;④当时,的取值范围是.其中结论正确的个数是()A. B. C. D.4.如图,点,在双曲线上,且.若的面积为,则().A.7 B. C. D.5.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是()A.8或6 B.10或8 C.10 D.86.在同一坐标系中,一次函数与二次函数的大致图像可能是A. B. C. D.7.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是()A. B. C. D.8.在中,,,,则直角边的长是()A. B. C. D.9.如图,在△ABC中,点D在边AB上,且AD=5cm,DB=3cm,过点D作DE∥BC,交边AC于点E,将△ADE沿着DE折叠,得△MDE,与边BC分别交于点F,G.若△ABC的面积为32cm2,则四边形DEGF的面积是()A.10cm2 B.10.5cm2 C.12cm2 D.12.5cm210.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°11.已知一个单位向量,设、是非零向量,那么下列等式中正确的是().A.; B.; C.; D..12.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.12二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,则△ABC的形状:_____14.如图,直线AB与⊙O相切于点C,点D是⊙O上的一点,且∠EDC=30°,则∠ECA的度数为_________.15.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.16.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.17.若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.18.如图,在中,,,点在上,且,则______.______.三、解答题(共78分)19.(8分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,求抛物线的函数表达式;若点是直线下方的抛物线上的动点,求的面积的最大值;若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.20.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.21.(8分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.22.(10分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?23.(10分)某商店如果将进货价为8元的商品按每件11元售出,每天可销售211件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价1.5元,其销量减少11件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得711元的利润,请你帮忙确定售价.24.(10分)计算:4sin30°﹣cos45°+tan260°.25.(12分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它过点A、B、C(要求尺规作图保留作图痕迹);(2)在(1)所作的圆中,求圆心角∠BOC的度数和该圆的半径26.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.2、B【分析】根据关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念,求出P1P2的坐标,得出a,b的值代入(a+b)2019求值即可.【详解】因为关于x轴对称横坐标不变,所以,a-1=2,得出a=3,又因为关于x轴对称纵坐标互为相反数,所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案为:B【点睛】本题考查关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念和有理数的幂运算原理,利用-1的偶次幂为1,奇次幂为它本身的原理即可快速得出答案为-1.3、B【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另个交点坐标为(3,0),则可对②进行判断;由对称轴方程可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断.【详解】∵观察函数的图象知:抛物线与轴有2个交点,
∴>0,所以①错误;∵抛物线的对称轴为直线,
而点关于直线的对称点的坐标为,
∴方程的两个根是,所以②正确;∵抛物线的对称轴为,即,∴,所以③正确;∵抛物线与轴的两点坐标为,,且开口向下,
∴当y>0时,的取值范围是,所以④正确;综上,②③④正确,正确个数有3个.故选:B.【点睛】本题考查了二次函数图象与系数的关系,关键是掌握对于二次函数,二次项系数a决定抛物线的开口方向和大小;一次项系数b和二次项系数a共同决定对称轴的位置;常数项c决定抛物线与y轴交点位置;抛物线与x轴交点个数由决定.4、A【分析】过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,根据待定系数法求出k的值,设点,利用△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积进行求解即可.【详解】如图所示,过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为点C,点D,由题意知,,设点,∴△AOB的面积=梯形ACDB的面积+△AOC的面积-△BOD的面积=梯形ACDB的面积,∴,解得,或(舍去),经检验,是方程的解,∴,∴,故选A.【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k的几何意义,用点A的坐标表示出△AOB的面积是解题的关键.5、B【分析】分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.【详解】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=因此这个三角形的外接圆半径为1.综上所述:这个三角形的外接圆半径等于8或1.故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键.6、D【分析】对于每个选项,先根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.【详解】A、由二次函数y=ax2+bx的图象得a>0,b>0,则一次函数y=ax+b经过第一、二、三象限,所以A选项错误;B、由二次函数y=ax2+bx的图象得a>0,b<0,则一次函数y=ax+b经过第一、三、四象限,所以B选项错误;C、由二次函数y=ax2+bx的图象得a<0,b<0,则一次函数y=ax+b经过第一、二、四象限,所以C选项错误;D、由二次函数y=ax2+bx的图象得a<0,b>0,则一次函数y=ax+b经过第二、三、四象限,所以D选项正确.故选:A.【点睛】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.7、D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当,,所以∽,故条件①能判定相似,符合题意;当,,所以∽,故条件②能判定相似,符合题意;当,即AC::AC,因为所以∽,故条件③能判定相似,符合题意;当,即PC::AB,而,所以条件④不能判断和相似,不符合题意;①②③能判定相似,故选D.【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.8、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,
∴BC=10cos40°.
故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.9、B【分析】根据相似多边形的性质进行计算即可;【详解】∵DE∥BC,∴,,又由折叠知,∴,∴DB=DF,∵,,∴,即,∴,∴,同理可得:,∴四边形DEGF的面积.故答案选B.【点睛】本题主要考查了相似多边形的性质,准确计算是解题的关键.10、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.11、B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:、左边得出的是的方向不是单位向量,故错误;、符合向量的长度及方向,正确;、由于单位向量只限制长度,不确定方向,故错误;、左边得出的是的方向,右边得出的是的方向,两者方向不一定相同,故错误.故选:.【点睛】本题考查了向量的性质.12、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.二、填空题(每题4分,共24分)13、等腰三角形【分析】△ABC为等腰三角形,理由为:连接AD,由AB为圆O的直径,利用直径所对的圆周角为直角得到AD垂直于BC,再由BD=CD,得到AD垂直平分BC,利用线段垂直平分线定理得到AB=AC,可得证.【详解】解:△ABC为等腰三角形,理由为:
连接AD,
∵AB为圆O的直径,
∴∠ADB=90°,
∴AD⊥BC,又BD=CD,
∴AD垂直平分BC,
∴AB=AC,
则△ABC为等腰三角形.
故答案为:等腰三角形.【点睛】此题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理是解本题的关键.14、30°【分析】连接OE、OC,根据圆周角定理求出∠EOC=60°,从而证得为等边三角形,再根据切线及等边三角形的性质即可求出答案.【详解】解:如图所示,连接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴为等边三角形,∴∠ECO=60°,∵直线AB与圆O相切于点C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案为:30°.【点睛】本题考查了圆的基本性质、圆周角定理及切线的性质,等边三角形的判定与性质,熟练掌握各性质判定定理是解题的关键.15、2【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=,∵b和m都是正整数,∴m的最小值为1.∴a=5m=2.故答案为:2.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.16、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,
∴b2=2-a,a≤2,
∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,
当a=2时,
a2+b2可取得最小值为1.
故答案是:1.【点睛】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.17、【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴,整理得,,∴当时,故答案为:.【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.18、【分析】在Rt△ABC中,根据,可求得AC的长;在Rt△ACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果.【详解】解:在Rt△ABC中,∵,∴AC=BC=1.设CD=x,则BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案为:1;.【点睛】本题考查解直角三角形,掌握相关概念是解题的关键.三、解答题(共78分)19、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.【分析】(1)先由抛物线的对称性确定点B坐标,再利用待定系数法求解即可;(2)先利用待定系数法求得直线BC的解析式,然后设出点P的横坐标为t,则可用含t的代数式表示出PE的长,根据面积的和差可得关于t的二次函数,再根据二次函数的性质可得答案;(3)先设D(m,0),然后用m的代数式表示出E点和P点坐标,由条件可得关于m的方程,解出m的值即可得解;(4)要使周长最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于点B是点A关于抛物线对称轴的对称点,则点M就是BC与抛物线对称轴的交点,由于点M的横坐标已知,则其纵坐标易得,再根据勾股定理求出AC+BC,即为周长的最小值.【详解】解:(1)∵对称轴为x=﹣1的抛物线与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以该抛物线解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)设直线BC的解析式为:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x﹣2,作PQ∥y轴交BC于Q,如图1,设P(t,t2+t﹣2),则Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=•PQ•4=﹣t2﹣2t=﹣(t+2)2+2,∴当t=﹣2时,△PBC面积有最大值,最大值为2;(3)设D(m,0),∵DP∥y轴,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵点A、B关于抛物线的对称轴对称,∴当点M为直线BC与对称轴的交点时,MA+MC的值最小,如图2,此时△AMC的周长最小.∵直线BC的解析式为y=﹣x﹣2,抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y=﹣.∴抛物线对称轴上存在点M(﹣1,﹣)符合题意,此时△AMC周长的最小值为AC+BC=.【点睛】此题是二次函数综合题,主要考查了利用待定系数法确定函数解析式、二次函数的性质、一元二次方程的解法、二次函数图象上的坐标特征和两线段之和最小等知识,属于常考题型,解题的关键是熟练掌握二次函数的性质和函数图象上点的坐标特征.20、路灯杆AB的高度是1m.【解析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,又∵CD=EF,∴,∵DF=3m,FG=4m,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得AB=1.答:路灯杆AB的高度是1m.【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.21、(1),(2);(3)(人)【解析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级名学生中成绩为优秀的学生人数大约是(人)【详解】解:(1)男生人数:1+2+2+4+9+14+5+2+1=40(人)女生人数:1+1+2+3+11+13+7+1+1=40(人)(2)根据条形统计图,分数为时女生人数达到最大,故众数为27(3)(人)【点睛】本题考查了条形统计图,数据的分析,用样本估计总体,解题的关键是读懂统计图表,获取每项的准确数值.22、(1)20;(2)65,1.【分析】(1)每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数列方程,即可得到结论;
(2)设每件商品涨价m元,每星期该商品的利润为W,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x元,
根据题意得,(60-40+x)(300-10x)=4000,
解得:x1=20,x2=-10,(不合题意,舍去),
答:每件商品涨价20元时,每星期该商品的利润是4000元;
(2)设每件商品涨价m元,每星期该商品的利润为W,
∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1
∴当m=5时,W最大值.
∴60+5=65(元),
答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23、(1)211-21x;(2)12元.【解析】试题分析:(1)如果设每件商品提高x元,即可用x表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.试题解析:解:(1)211-21x;(2)根据题意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x=2.所以售价为11+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作种植合同书范例
- 海洋工程项目的报建职责与要求
- 网络安全应急演练计划与响应
- 二零二五房屋买卖定金协议书
- 二零二五版拆迁补偿协议书
- 个人担保合同二零二五年
- 装修合同及预算
- 安全教育综合实践教学工作计划
- 人事部人才引进与管理职责
- 2025年小学三年级上学期体育锻炼计划
- 利用DeepSeek提升教育质量和学习效率
- 2025健身房租赁合同范本模板
- 邢台2025年河北邢台学院高层次人才引进100人笔试历年参考题库附带答案详解
- 2025年长春职业技术学院单招职业技能考试题库汇编
- 中考政治复习方案第二单元法律与秩序考点16违法犯罪教材梳理
- 《重大火灾隐患判定方法》知识培训
- 2025年台州职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 加油站台账记录模板
- 2025年江苏苏州市(12345)便民服务中心招聘座席代表人员高频重点提升(共500题)附带答案详解
- Unit6Topic2SectionB公开课课件仁爱英语八年级下册
- DB4501T 0008-2023 化妆品行业放心消费单位创建规范
评论
0/150
提交评论