湖南省张家界市永定区2025届九上数学期末调研模拟试题含解析_第1页
湖南省张家界市永定区2025届九上数学期末调研模拟试题含解析_第2页
湖南省张家界市永定区2025届九上数学期末调研模拟试题含解析_第3页
湖南省张家界市永定区2025届九上数学期末调研模拟试题含解析_第4页
湖南省张家界市永定区2025届九上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省张家界市永定区2025届九上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.反比例函数y=﹣的图象在()A.第二、四象限 B.第一、三象限 C.第一、二象限 D.第三、四象限2.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.3.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于()A. B. C. D.4.下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.5.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()A.a+c=0B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C.当函数在x<时,y随x的增大而减小D.当﹣1<m<n<0时,m+n<6.如图,矩形的对角线交于点.若,,则下列结论错误的是()A. B. C. D.7.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.8.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3609.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.10.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.311.二次函数中与的部分对应值如下表所示,则下列结论错误的是()-1013-1353A. B.当时,的值随值的增大而减小C.当时, D.3是方程的一个根12.已知正方形的边长为4cm,则其对角线长是()A.8cm B.16cm C.32cm D.cm二、填空题(每题4分,共24分)13.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是_____.14.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是15.关于的方程的一个根为2,则______.16.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.17.二次函数的图象如图所示,对称轴为.若关于的方程(为实数)在范围内有实数解,则的取值范围是__________.18.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.三、解答题(共78分)19.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)如图,在平面直角坐标系中,正方形OABC的顶点A、C在坐标轴上,△OCB绕点O顺时针旋转90°得到△ODE,点D在x轴上,直线BD交y轴于点F,交OE于点H,OC的长是方程x2-4=0的一个实数根.(1)求直线BD的解析式.(2)求△OFH的面积.(3)在y轴上是否存在点M,使以点B、D、M三点为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,不必说明理由.22.(10分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可).23.(10分)用适当的方法解下方程:24.(10分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点,抛物线与x轴另一个交点为D.(1)求图中抛物线的解析式;(2)当点P在线段AB上运动时,求线段PC的长度的最大值;(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标,若不存在,请说明理由.25.(12分)如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,,求的半径长;(3)①求证:;②若的面积为,,求的长.26.在平面直角坐标系中,已知抛物线的表达式为:y=﹣x2+bx+c.(1)根据表达式补全表格:抛物线顶点坐标与x轴交点坐标与y轴交点坐标(1,0)(0,-3)(2)在如图的坐标系中画出抛物线,并根据图象直接写出当y随x增大而减小时,自变量x的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【解析】根据反比例函数y=(k≠0)的图象,当k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;当k<0时图象位于第二、四象限,在每个象限内,y随x的增大而增大可得:∵k=-2<0,

∴函数图象在二、四象限.

故选B.【点睛】反比例函数y=(k≠0)的图象:当k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;当k<0时图象位于第二、四象限,在每个象限内,y随x的增大而增大.2、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.3、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【详解】根据题意:在Rt△ABC中,,则,在Rt△ACD中,,则,∴.故选:D.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.4、D【解析】根据题意直接利用轴对称图形和中心对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既是中心对称图形也是轴对称图形,故此选项正确;故选:D.【点睛】本题主要考查中心对称与轴对称的概念即有轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、C【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M(﹣1,2)和点N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正确;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴无论a为何值,函数图象与x轴必有两个交点,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正确;二次函数y=ax2+bx+c(a>0)的对称轴x=﹣=,当a>0时,不能判定x<时,y随x的增大而减小;∴C错误;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正确,故选:C.【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.6、D【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,再解直角三角形求出即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,A、在Rt△ABC中,∴,此选项不符合题意由三角形内角和定理得:∠BAC=∠BDC=∠α,B、在Rt△BDC中,,∴,故本选项不符合题意;C、在Rt△ABC中,,即AO=,故本选项不符合题意;D、∴在Rt△DCB中,∴,故本选项符合题意;故选:D.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.7、B【解析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.【详解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故选B.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.8、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.9、C【解析】试题解析:C.两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.10、A【解析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.11、C【分析】根据表格中的数值计算出函数表达式,从而可判断A选项,利用对称轴公式可计算出对称轴,从而判断其增减性,再根据函数图象及表格中y=3时对应的x,可判断C选项,把对应参数值代入即可判断D选项.【详解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本选项正确;B.该函数对称轴为直线,且,函数图象开口向下,所以当时,y随x的增大而减小,故本选项正确;C.由表格可知,当x=0或x=3时,y=3,且函数图象开口向下,所以当y<3时,x<0或x>3,故本选项错误;D.方程为,把x=3代入得-9+6+3=0,所以本选项正确.故选:C.【点睛】本题考查了二次函数表达式求法,二次函数图象与系数的关系,二次函数的性质等知识,“待定系数法”是求函数表达式的常用方法,需熟练掌握.12、D【分析】作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【详解】解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以对角线的长:AC=4cm.故选D.二、填空题(每题4分,共24分)13、(﹣3,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即可得答案.【详解】点P(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).【点睛】本题主要考查平面直角坐标系中,关于原点的两个点的坐标变化规律,掌握两个点关于原点对称时,它们的坐标符号相反,是解题的关键.14、y2=.【分析】根据,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,S△AOB=1,∴△CBO面积为3,∴xy=6,∴y2的解析式是:y2=.故答案为:y2=.15、1【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.16、【分析】连接AD,过M作MG⊥AD于G,根据正六边形的相关性质,求得AD,MD的值,再根据∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【详解】解:连接AD,过M作MG⊥AD于G,则由正六边形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案为.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.17、【分析】先求出函数解析式,求出函数值取值范围,把t的取值范围转化为函数值的取值范围.【详解】由已知可得,对称轴所以b=-2所以当x=1时,y=-1即顶点坐标是(1,-1)当x=-1时,y=3当x=4时,y=8由得因为当时,所以在范围内有实数解,则的取值范围是故答案为:【点睛】考核知识点:二次函数和一元二次方程.数形结合分析问题,注意函数的最低点和最高点.18、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,

∴-2+4=-m,-2×4=n,

解得:m=-2,n=-8,

∴m+n=-1,

故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.三、解答题(共78分)19、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为,求得大孔所在的抛物线的解析式为,当时,得到,于是得到结论;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,求得小孔所在的抛物线的解析式为,当时,得到,于是得到结论.【详解】解:(1)设大孔所在的抛物线的解析式为,由题意得,,,,大孔所在的抛物线的解析式为,当时,,该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,由题意得,,,,小孔所在的抛物线的解析式为,当时,,小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于的一元一次方程是解题的关键.20、(1)60,90;(2)见解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.21、(1)直线BD的解析式为:y=-x+1;(2)△OFH的面积为;(3)存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【分析】(1)根据求出坐标点B(-2,2),点D(2,0),然后代入一次函数表达式:y=kx+b得,利用待定系数法即可求出结果.(2)通过面积的和差,S△OFH=S△OFD-S△OHD,即可求解.(3)分情况讨论:当点M在y轴负半轴与当点M在y轴正半轴分类讨论.【详解】解:(1)x2-4=0,解得:x=-2或2,

故OC=2,即点C(0,2).∴OD=OC=2,即:D(2,0).又∵四边形OABC是正方形.∴BC=OC=2,即:B(-2,2).将点B(-2,2),点D(2,0)代入一次函数表达式:y=kx+b得:,解得:,

故直线BD的表达式为:y=-x+1.(2)直线BD的表达式为:y=-x+1,则点F(0,1),得OF=1.∵点E(2,2),∴直线OE的表达:y=x.解得:∴H∴S△OFH=S△OFD-S△OHD=-==(3)如图:当点M在y轴负半轴时.情况一:令BD=BM1,此时时,BD=BM1,此时是等腰三角形,此时M1(0,-2).情况二:令M2D=BD,此时,M2D2=BD2=,所以OM=,此时M2(0,-4).如图:当点M在y轴正半轴时.情况三:令M3D=BD,此时,M3D2=BD2=,所以OM=,此时M3(0,4).情况四:令BM4=BD,此时,BM42=BD2=,所以CM=,所以,OM=MC+OC=6,此时M4(0,6).综上所述,存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【点睛】本题考查的是一次函数综合运用,涉及到勾股定理、正方形的基本性质、解一元二次方程等,其中(3),要注意分类求解,避免遗漏.22、(1);(2);(3)答案不唯一,合理即可【解析】问题(1)根据是等边三角形证明,得出,再根据三角形外角性质即可得证;问题(2)作交于点,根据四边形是菱形得出,在中利用三角函数即可求得,,最后根据勾股定理得出答案.问题(3)从个人的积累和心得写一句话即可.【详解】问题(1)∵是等边三角形,∴,.∵,∴,∴.∵,∴,问题(2)如图,作交于点,∵四边形是菱形,∴,,∴是等边三角形,∴.由(1)可知,在中,,即,∴,,即,∴.在中,由勾股定理可得,∴,∴,∴菱形的边长为.问题(3)如平时应该注意基本图形的积累,在学习过程中做个有心人等,言之有理即可.【点睛】本题考查了菱形的性质、等边三角形的判定、勾股定理及三角函数,综合性比较强,需要添加合适的辅助线对解决问题做铺垫.23、x=3或1【分析】移项,因式分解得到,再求解.【详解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【点睛】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法.24、(1);(2)当时,线段PC有最大值是2;(3),,【分析】把x=0,y=0分别代入解析式可求点A,点B坐标,由待定系数法可求解析式;设点C,可求PC,由二次函数的性质可求解;设点P的坐标为(x,−x+2),则点C,分三种情况讨论,由平行四边形的性质可出点P的坐标.【详解】解:(1)可求得A(0,2),B(4,0)∵抛物线经过点A和点B∴把(0,2),(4,0)分别代入得:解得:∴抛物线的解析式为.(2)设点P的坐标为(x,−x+2),则C()∵点P在线段AB上∴∴当时,线段PC有最大值是2(3)设点P的坐标为(x,−x+2),∵PC⊥x轴,∴点C的横坐标为x,又点C在抛物线上,∴点C(x,)①当点P在第一象限时,假设存在这样的点P,使四边形AOPC为平行四边形,则OA=PC=2,即,化简得:,解得x1=x2=2把x=2代入则点P的坐标为(2,1)②当点P在第二象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把,则点P的坐标为;③当点P在第四象限时,假设存在这样的点P,使四边形AOCP为平行四边形,则OA=PC=2,即,化简得:,解得:把则点P的坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论