版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省富顺县九上数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件是必然事件的是()A.半径为2的圆的周长是2 B.三角形的外角和等于360°C.男生的身高一定比女生高 D.同旁内角互补2.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解3.如图,在正方形中,为边上的点,连结,将绕点逆时针方向旋转得到,连结,若,则的度数为()A. B. C. D.4.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.125.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=6.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)7.已知二次函数,当时随的增大而减小,且关于的分式方程的解是自然数,则符合条件的整数的和是()A.3 B.4 C.6 D.88.在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为()A. B. C. D.9.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.10.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. B. C. D.11.已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.12.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.14.一元二次方程(x﹣1)2=1的解是_____.15.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.16.只请写出一个开口向下,并且与轴有一个公共点的抛物线的解析式__________.17.若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是__________________.(用“<”连接)18.一组正方形按如图所示的方式放置,其中顶点在轴上,顶点,,,,,,在轴上,已知正方形的边长为,,则正方形的边长为__________________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.20.(8分)某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰好是销售收入的25%.如果第一天的销售收入5万元,且每天的销售收入都有增长,第三天的利润是1.8万元,(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?21.(8分)例:利用函数图象求方程x2﹣2x﹣2=0的实数根(结果保留小数点后一位).解:画出函数y=x2﹣2x﹣2的图象,它与x轴的公共点的横坐标大约是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的实数根为x1≈﹣0.1,x2≈2.1.我们还可以通过不断缩小根所在的范围估计一元二次方程的根.……这种求根的近似值的方法也适用于更高次的一元方程.根据你对上面教材内容的阅读与理解,解决下列问题:(1)利用函数图象确定不等式x2﹣4x+3<0的解集是;利用函数图象确定方程x2﹣4x+3=的解是.(2)为讨论关于x的方程|x2﹣4x+3|=m解的情况,我们可利用函数y=|x2﹣4x+3|的图象进行研究.①请在网格内画出函数y=|x2﹣4x+3|的图象;②若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解,则m的取值范围为;③若关于x的方程|x2﹣4x+3|=m有四个不相等的实数解x1,x2,x3,x4(x1<x2<x3<x4),满足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.22.(10分)如图,是的平分线,点在上,以为直径的交于点,过点作的垂线,垂足为点,交于点.(1)求证:直线是的切线;(2)若的半径为,,求的长.23.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?24.(10分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.25.(12分)如图,在平面直角坐标系中,一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出AG+OG的最小值.26.某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件),可判断出正确答案.【详解】解:A、半径为2的圆的周长是4,不是必然事件;B、三角形的外角和等于360°,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁内角互补,不是必然事件;故选B.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.3、D【分析】根据旋转的性质可知,然后得出,最后利用即可求解.【详解】∵绕点逆时针方向旋转得到,∴,,∴.故选:D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质,掌握旋转的性质及等腰直角三角形的性质是解题的关键.4、C【解析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.5、B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=.故选B.点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.6、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.7、A【分析】由二次函数的增减性可求得对称轴,可求得a取值范围,再求分式方程的解,进行求解即可.【详解】解:
∵y=-x2+(a-2)x+3,
∴抛物线对称轴为x=,开口向下,
∵当x>2时y随着x的增大而减小,
∴≤2,解得a≤6,
解关于x的分式方程可得x=,且x≠3,则a≠5,
∵分式方程的解是自然数,
∴a+1是2的倍数的自然数,且a≠5,
∴符合条件的整数a为:-1、1、3,
∴符合条件的整数a的和为:-1+1+3=3,
故选:A.【点睛】此题考查二次函数的性质,由二次函数的性质求得a的取值范围是解题的关键.8、D【分析】让红球的个数除以球的总个数即为所求的概率.【详解】解:∵盒子中一共有3+2+4=9个球,红色的球有4个∴摸出的小球为红色的概率为故选D【点睛】此题主要考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.10、B【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.11、A【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a,b的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;若反比例函数经过第二、四象限,则a<1.所以b>1.则一次函数的图象应该经过第二、三、四象限.故选项A正确;故选A.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.12、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】根据锐角的正弦为对边比斜边,可得答案.【详解】解:在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=,故答案为:.【点睛】本题考查了求解三角函数,属于简单题,熟悉正弦三角函数的定义是解题关键.14、x=2或0【分析】根据一元二次方程的解法即可求出答案.【详解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案为:x=2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p⩾0)的一元二次方程可采用直接开平方的方法解一元二次方程.15、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.16、【分析】要根据开口向下且与x轴有惟一的公共点,写出一个抛物线解析式即可.【详解】解:∵与x轴只有一个公共点,并且开口方向向下,
∴a<0,△=0,即b2-4ac=0,满足这些特点即可.如.
故答案为:(答案不唯一).【点睛】此题主要考查了二次函数的性质,要了解性质与函数中a,b,c的关系.17、a<b<c【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,∴点离对称轴距离越远函数值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a<b<c,故答案为:a<b<c.【点睛】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.18、【分析】由正方形的边长为,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根据三角函数的定义和正方形的性质,即可得到答案.【详解】∵正方形的边长为,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此类推:正方形的边长为:,∴正方形的边长为:.故答案是:.【点睛】本题主要考查正方形的性质和三角函数的定义综合,掌握用三角函数的定义解直角三角形,是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【点睛】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.20、(1)7.2万元;(2)20%.【分析】(1)利用第三天的销售收入=第三天的利润÷销售利润占销售收入的比例,即可求出结论;(2)设第二天和第三天销售收入平均每天的增长率是x,根据第一天及第三天的销售收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】(1)1.8÷25%=7.2(万元).答:第三天的销售收入是7.2万元.(2)设第二天和第三天销售收入平均每天的增长率是x,依题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:第二天和第三天销售收入平均每天的增长率是20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、(2)2<x<3,x=4;(2)①见解析,②0<m<2,③m=0.8【分析】画出图象,根据题意通过观察可求解.【详解】解:(2)x2﹣4x+3=0与x轴的交点为(2,0),(3,0),③m=0.8∴x2﹣4x+3<0的解集是2<x<3,画出函数y=x2﹣4x+3和函数y=的图象,可知x2﹣4x+3=的解为x=4,故答案为2<x<3,x=4;(2)①如图:②如图:通过观察图象可知:|x2﹣4x+3|=m有四个不相等的实数解,0<m<2;故答案为0<m<2;③由x4﹣x3=x3﹣x2=x2﹣x2,可得x2、x3是x2x4的三等分点,由图可知,m=0.8时,满足x4﹣x3=x3﹣x2=x2﹣x2.【点睛】本题考查了利用图像解不等式,等式.根据函数解析式画图,数形结合思想是解题的关键22、(1)证明见解析;(2)1.【分析】(1)根据角平分线的定义和同圆的半径相等可得,证明,可得结论;(2)在中,设,则,,证明,表示,由平行线分线段成比例定理得:,代入可得结论.【详解】解:(1)连接.∵AG是∠PAQ的平分线,∵半径∴直线BC是的切线.(2)连接DE.∵为的直径,∵,设在中,在与中∵,∴在Rt中,AE=12,∴,即∴∴在Rt△ODB与Rt△ACB中∵,∴,∴,即【点睛】本题考查了三角形与圆相交的问题,掌握角平分线的定义、勾股定理、相似三角形的判定以及平行线分线段成比例是解题的关键.23、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.24、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为,求得大孔所在的抛物线的解析式为,当时,得到,于是得到结论;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,求得小孔所在的抛物线的解析式为,当时,得到,于是得到结论.【详解】解:(1)设大孔所在的抛物线的解析式为,由题意得,,,,大孔所在的抛物线的解析式为,当时,,该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为,由题意得,,,,小孔所在的抛物线的解析式为,当时,,小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于的一元一次方程是解题的关键.25、(1)见解析;(2)D(,+2);(3).【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=∠ADC=60°,利用锐角三角函数求出AD,设D(m,m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=AG,从而得出AG+OG=GJ+OG,设J点的坐标为(n,n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,AP=∴=,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△PO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年担保业务反担保不动产抵押协议模板版B版
- 2024年度装饰工程软装采购合同2篇
- 2024年度医疗行业人才培训与输出合同2篇
- 2024年房产买卖合同(限售)3篇
- 2024年度数字版权管理技术授权合同3篇
- 2024年度清洁能源发电项目投资合作协议书3篇
- 2024年度渔纬港海鲜自助加盟条款6篇
- 2024年智能交通基础设施建设工程招标合同范本
- 2024年商业广告摄影合同5篇
- 2024年度石灰石用于高端建筑材料供应合同2篇
- 公路建设项目财务分析
- 老年糖尿病患者的血糖管理-PPT
- 最美的化学反应(2018陕西中考记叙文阅读试题含答案)
- 公司车辆加油费用控制方案
- 在线学习的优点和缺点英语作文
- 身份证籍贯自动对照自动生成
- 办公楼安全风险管控(办公楼)
- 中国铝业股份有限公司巩义智恩铝土矿矿产资源开采与生态修复方案
- 消杀除四害工作记录表
- 初中人教版九年级化学上册第三单元单元复习课公开课教案
- 临床技能学智慧树知到答案章节测试2023年温州医科大学
评论
0/150
提交评论