江苏省淮安市2025届数学九上期末学业质量监测试题含解析_第1页
江苏省淮安市2025届数学九上期末学业质量监测试题含解析_第2页
江苏省淮安市2025届数学九上期末学业质量监测试题含解析_第3页
江苏省淮安市2025届数学九上期末学业质量监测试题含解析_第4页
江苏省淮安市2025届数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市2025届数学九上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是()A. B.C. D.2.若点都是反比例函数图像上的点,并且,则下列结论中正确的是()A. B.C.随的增大而减小 D.两点有可能在同一象限3.下列方程中,是关于x的一元二次方程的为()A. B. C. D.4.下列函数中属于二次函数的是()A.y=x B.y=2x2-1 C.y= D.y=x2++15.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.6.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.27.一组数据3,1,4,2,-1,则这组数据的极差是()A.5 B.4 C.3 D.28.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=29.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A.7 B.8 C.9 D.1011.顺次连接梯形各边中点所组成的图形是()A.平行四边形 B.菱形 C.梯形 D.正方形12.如图,在中,DE∥BC,,,,()A.8 B.9 C.10 D.12二、填空题(每题4分,共24分)13.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂(单位:)的函数解析式为______.14.连掷两次骰子,它们的点数都是4的概率是__________.15.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.16.如图,在中,,,延长至点,使,则________.17.如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是________.18.已知:如图,△ABC的面积为16,点D、E分别是边AB、AC的中点,则△ADE的面积为______.三、解答题(共78分)19.(8分)如图,在中,,以为直径的交于,点在线段上,且.(1)求证:是的切线.(2)若,求的半径.20.(8分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.21.(8分)综合与探究如图,抛物线经过点、、,已知点,,且,点为抛物线上一点(异于).(1)求抛物线和直线的表达式.(2)若点是直线上方抛物线上的点,过点作,与交于点,垂足为.当时,求点的坐标.(3)若点为轴上一动点,是否存在点,使得由,,,四点组成的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.22.(10分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).(1)请画出△ABC关于原点对称的△A1B1C1;(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.24.(10分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.25.(12分)有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?26.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系2、A【分析】根据反比例函数的图象及性质和比例系数的关系,即可判断C,然后根据即可判断两点所在的象限,从而判断D,然后判断出两点所在的象限即可判断B和A.【详解】解:∵中,-6<0,∴反比例函数的图象在二、四象限,在每一象限,y随x的增大而增大,故C错误;∵∴点在第四象限,点在第二象限,故D错误;∴,故B错误,A正确.故选A.【点睛】此题考查的是反比例函数的图象及性质,掌握反比例函数的图象及性质与比例系数的关系是解决此题的关键.3、B【解析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(1)未知数的最高次数是1;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax1+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.,是分式方程,B.,正确,C.,是二元二次方程,D.,是关于y的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.4、B【解析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A.y=x是正比例函数,不符合题意;B.y=2x2-1是二次函数,符合题意;C.y=不是二次函数,不符合题意;D.y=x2++1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.5、D【分析】只要证明,即可解决问题.【详解】解:A.,可得AE:AC=1:1,与已知不成比例,故不能判定B.,可得AC:AE=1:1,与已知不成比例,故不能判定;C选项与已知的,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;D.,可得DE//BC,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.7、A【分析】根据极差的定义进行计算即可.【详解】这组数据的极差为:4-(-1)=5.故选A.【点睛】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.8、C【解析】试题解析:x(x+1)=0,

⇒x=0或x+1=0,

解得x1=0,x1=-1.

故选C.9、C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.10、B【解析】解:∵个正六边形的一边恰在另一个正六边形的对角线上,∴它的一半是60°,它的邻补角也是60°,∴上面的小三角形是等边三角形,∴上面的(阴影部分)外轮廓线的两小段和为1,同理可知下面的(阴影部分)外轮廓线的两小段和为1,故这个图形(阴影部分)外轮廓线的周长是1.故选B.11、A【解析】连接AC、BD,根据三角形的中位线定理得到EH∥AC,EH=AC,同理FG∥AC,FG=AC,进一步推出EH=FG,EH∥FG,即可得到答案.【详解】解:连接AC、BD,∵E是AD的中点,H是CD的中点,∴EH=AC,同理FG=AC,∴EH=FG,同理EF=HG,∴四边形EFGH是平行四边形,故选:A.【点睛】本题考查了中位线的性质,平行四边形的判定,属于简单题,熟悉中位线的性质是解题关键.12、D【分析】先由DE∥BC得出,再将已知数值代入即可求出AC.【详解】∵DE∥BC,∴,∵AD=5,BD=10,∴AB=5+10=15,∵AE=4,∴,∴AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.二、填空题(每题4分,共24分)13、【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【详解】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则.故答案为:.【点睛】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.14、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.16、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.【点睛】本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.17、【解析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出△PED的周长即可解题.【详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;

所以△PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm.【点睛】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.18、4【分析】根据三角形中位线的性质可得DE//BC,,即可证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】∵点D、E分别是边AB、AC的中点,∴DE为△ABC的中位线,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面积为16,∴S△ADE=×16=4.故答案为:4【点睛】本题考查三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)的半径为1.【分析】(1)如图(见解析),连接OD,先根据等边对等角求出,再根据直角三角形两锐角互余得,从而可得,最后根据圆的切线的判定定理即可得证;(2)先根据圆的切线的判定定理得出是的切线,再根据切线长定理可得,从而可得AC的长,最后在中,利用直角三角形的性质即可得.【详解】如图,连接又,则,且OD为的半径是的切线;(2),是直径是的切线由(1)知,是的切线在中,,则故的半径为1.【点睛】本题考查了等腰三角形的性质、直角三角形的性质、勾股定理、圆的切线的判定定理、切线长定理,较难的是(2),利用切线长定理求出EC的长是解题关键.20、(1)①(6,),②(3,);(2)【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE=,∴OE=OA-AE=6-3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②(3,3);(2)①当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,∴,∴EF=此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x)∴.当3<x≤5时,如图AQ=OIIOOA=x36=x3AH=(x3)S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣∴.③当5<x≤9时,如图∵CE∥DP∴∴∴S=(BE+OA)•OC=(12﹣)∴.④当x>9时,如图∵AH∥PI∴∴∴S=OA•AH=.综上:.【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.21、(1),;(2)点的坐标为;(3)存在,点的坐标为或或【分析】(1),则OA=4OC=8,故点A(-8,0);△AOC∽△COB,则△ABC为直角三角形,则CO2=OA•OB,解得:OB=2,故点B(2,0);即可求解;

(2)PE=EF,即;即可求解;

(3)分BC是边、BC是对角线两种情况,分别求解即可.【详解】解:(1)∵,,∴.由点的坐标可知,故,,则点,点.设抛物线的表达式为,代入点的坐标,得,解得.故抛物线的表达式为.设直线的表达式为,代入点、的坐标,得,解得故直线的表达式为.(2)设点的坐标为,则点的坐标分别为,,.∵,∴,解得或(舍去),则,故当时,点的坐标为.(3)设点P(m,n),n=,点M(s,0),而点B、C的坐标分别为:(2,0)、(0,4);

①当BC是边时,

点B向左平移2个单位向上平移4个单位得到C,

同样点P(M)向左平移2个单位向上平移4个单位得到M(P),

即m-2=s,n+4=0或m+2=s,n-4=0,

解得:m=-6或±-3,

故点P的坐标为:(-6,4)或(-3,-4)或(--3,-4);

②当BC是对角线时,

由中点公式得:2=m+s,n=4,

故点P(-6,4);

综上,点P的坐标为:(-6,4)或(-3,-4)或(--3,-4).【点睛】此题考查二次函数综合运用,一次函数的性质,平行四边形的性质,三角形相似,解题关键在于注意(3),要注意分类求解,避免遗漏.22、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.23、(1)见解析;(1)见解析【分析】(1)利用关于原点对称的点的坐标特征找出A1,B1,C1,然后描点即可;

(1)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可.【详解】解:(1)如图,△A1B1C1为所作;(1)如图,△A1B1C1为所作.【点睛】本题考查了作图-根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24、①证明见解析;(2)S菱形CODP=24.【解析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论