版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区名校2025届九年级数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35° B.30° C.25° D.20°2.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为()A.64 B.72 C.80 D.963.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A. B. C.1 D.24.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16m B.32m C.32m D.64m5.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<26.如图,正方形的边长是4,是的中点,连接、相交于点,则的长是()A. B. C. D.57.如图,在中,分别为边上的中点,则与的面积之比是()A. B. C. D.8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10009.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.10.能判断一个平行四边形是矩形的条件是()A.两条对角线互相平分 B.一组邻边相等C.两条对角线互相垂直 D.两条对角线相等二、填空题(每小题3分,共24分)11.计算的结果是_____________.12.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米13.若是方程的一个根,则的值是________.14.已知在正方形ABCD中,点E、F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M、N,则下列结论正确的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF15.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.16.若一组数据1,2,x,4的平均数是2,则这组数据的方差为_____.17.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.18.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).三、解答题(共66分)19.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)20.(6分)解方程:(1);(2).21.(6分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=.22.(8分)如图,的直径,点为上一点,连接、.(1)作的角平分线,交于点;(2)在(1)的条件下,连接.求的长.23.(8分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)24.(8分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)25.(10分)“道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为.(1)试求该车从点到点的平均速度(结果保留根号);(2)试说明该车是否超速.26.(10分)如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:CD∥AB,∠D=50°则∠BOD=50°.则∠DOA=180°-50°=130°.则OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.选C.考点:平行线性质点评:本题难度较低,主要考查学生对平行线性质及角平分线性质的掌握.2、C【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【详解】∵S△BDE=4,S△CDE=16,
∴S△BDE:S△CDE=1:4,
∵△BDE和△CDE的点D到BC的距离相等,∴,∴,∵DE∥AC,
∴△DBE∽△ABC,
∴S△DBE:S△ABC=1:25,∴S△ABC=100
∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.
故选C.【点睛】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.3、C【详解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【点睛】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.4、B【分析】根据时间,算出斜坡的长度,再根据坡比和三角函数的关系,算出人的下降高度即可.【详解】设斜坡的坡角为α,当t=4时,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32,故选:B.【点睛】本题考查坡比和三角函数中正切的关系,属基础题.5、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.6、C【分析】先根据勾股定理解得BD的长,再由正方形性质得AD∥BC,所以△AOD∽△EOB,最后根据相似三角形性质即可解答,【详解】解:∵四边形ABCD是正方形,边长是4,∴BD=,,∵是的中点,AD∥BC,所以BC=AD=2BE,∴△AOD∽△EOB,∴,∴OD=BD=×4=.故选:C.【点睛】本题考查正方形性质、相似三角形的判定和性质,解题关键是熟练掌握相似三角形的判定和性质.7、A【分析】根据相似三角形的性质即可求出答案.【详解】由题意可知:是的中位线,,,,故选:A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.9、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【点睛】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.10、D【分析】根据矩形的判定进行分析即可;【详解】选项A中,两条对角线互相平分是平行四边形,故选项A错误;选项B中,一组邻边相等的平行四边形是菱形,故选项B错误;选项C中,两条对角线互相垂直的平行四边形是菱形,故选项C错误;选项D中,两条对角线相等的平行四边形是矩形,故选项D正确;故选D.【点睛】本题主要考查了矩形的判定,掌握矩形的判定是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=2-2=1.故答案为1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12、【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:13、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【详解】解:由题意,将代入方程∴,,∴故答案为:1【点睛】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.14、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正确;由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正确;BM、DN、MN存在BM2+DN2=MN2的关系,故③错误.【详解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正确;如图,把△ADF绕点A顺时针旋转90°得到△ABH,
由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,
∵∠EAF=45°,
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,
∴∠EAH=∠EAF=45°,
在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),
∴EH=EF,
∴∠AEB=∠AEF,
∴BE+BH=BE+DF=EF,故④正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,
∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,
∴∠ANM=∠AEB,
∴∠AEB=∠AEF=∠ANM;故②正确;BM、DN、MN满足等式BM2+DN2=MN2,而非BM+DN=MN,故③错误.故答案为①②④.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,熟记各性质并利用旋转变换作辅助线构造成全等三角形是解题的关键.15、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.16、【分析】先由数据的平均数公式求得x,再根据方差的公式计算即可.【详解】∵数据1,2,x,4的平均数是2,∴,解得:,∴方差.故答案为:.【点睛】本题考查了平均数与方差的定义,平均数是所有数据的和除以数据的个数;方差是一组数据中各数据与它们的平均数的差的平方的平均数.17、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:
共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,
故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.18、<【解析】由二次函数图象的开口向下,可得.【详解】解:∵二次函数的图象开口向下,∴.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;还可以决定开口大小,越大开口就越小.三、解答题(共66分)19、4秒【分析】作AB⊥CF于B,根据方向角、勾股定理求出AB的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB⊥CF于B,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴米,∴米,∵<110,∴消防车的警报声对学校会造成影响,造成影响的路程为米,∵秒,∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20、(1);(2)【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【详解】(1)原方程可化为,得(2),所以.【点睛】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.21、(2)(2)P(,)【详解】解:(2)∵OA=2,OC=2,∴A(-2,0),C(0,2).将C(0,2)代入得c=2.将A(-2,0)代入得,,解得b=,∴抛物线的解析式为;(2)如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设直线AD的解析式为y=kx+b,将A(-2,0),D(2,2)分别代入解析式得,,解得,,∴直线AD解析式为y=x+2.∵二次函数的对称轴为,∴当x=时,y=×+2=.∴P(,).22、(1)见解析;(2)【分析】(1)以点为圆心,任意长为半径(不大于AC为佳)画弧于AC和BC交于两点,然后以这两个交点为圆心,大于这两点之间距离的一半为半径画两段弧交于一点,过点C和该交点的线就是的角平分线;(2)连接,先根据角平分线的定义得出,再根据圆周角定理得出,最后再利用勾股定理求解即可.【详解】解:(1)如图,为所求的角平分线;(2)连接,的直径,,.平分,..在中,.【点睛】本题主要考察基本作图、角平分线定义、圆周角定理、勾股定理,准确作出辅助线是关键.23、(1);(2)【分析】(1)通过证明,再根据相似三角形对应边成比例即可求出;(2)设AB=m,由是中边上的中点,可得,进而得出,根据题意,进而得出【详解】解:(1)∵为的中点,,∴为的中点,,∴,∴,∴,∴,∴.(2)∵,∴.∵,∴.∵,∴.【点睛】本题考查了相似三角形的判定及性质和三角形的中位线定理,熟练掌握相关性质结合题目条件论证是解题的关键.24、(1)见详解;(2)点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.理由见详解【分析】(1)根据三角形的中位线定理可证得DE∥GF,DE=GF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【详解】(1)∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年西安市东城第二学校教师招聘考试真题
- 2023年九江市庐山市卫生健康单位考调考试真题
- 2023年惠州市龙门县市容环境卫生事务中心招聘考试真题
- led灯课程设计总结
- 9月启程德育课程设计
- java高级课程设计之管理系统
- java课程设计小程序报告
- 2016年广东省中考满分作文《我真想对妈妈说》
- 2016年甘肃兰州中考满分作文《我相信你一定来临》4
- 一级公路隧道课程设计
- 概率论与数理统计10大案例
- 六人英语话剧《三打白骨精》剧本
- 食品安全法-食品安全法基本内容课件
- 胎心监护及判读-课件
- CJT121再生树脂复合材料检查井盖
- 油菜人工割晒一机械脱粒收获技术
- 2023年重庆市旅游业统计公报要点
- 789乘法练习题【模板】
- 真菌性脓毒症诊治对策
- 纺织非遗:让世界读懂中国之美智慧树知到答案章节测试2023年天津工业大学
- GB/T 8905-2012六氟化硫电气设备中气体管理和检测导则
评论
0/150
提交评论