2022-2023学年河南省襄城县春联考数学八年级第一学期期末检测试题含解析_第1页
2022-2023学年河南省襄城县春联考数学八年级第一学期期末检测试题含解析_第2页
2022-2023学年河南省襄城县春联考数学八年级第一学期期末检测试题含解析_第3页
2022-2023学年河南省襄城县春联考数学八年级第一学期期末检测试题含解析_第4页
2022-2023学年河南省襄城县春联考数学八年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)2.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条 B.3条 C.5条 D.无数条3.使分式有意义的x的取值范围为()A.x≠﹣2 B.x≠2 C.x≠0 D.x≠±24.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形5.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙6.如图,,,,则度数是()A. B. C. D.7.如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?()A.① B.② C.③ D.④8.下列二次根式中,是最简二次根式的是()A. B. C. D.9.平面直角坐标系中,点A(﹣2,6)与点B关于y轴对称,则点B的坐标是()A.(﹣2,6) B.(﹣2,﹣6) C.(2,6) D.(2,﹣6)10.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定二、填空题(每小题3分,共24分)11.五边形的外角和等于°.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.13.如图,△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,AB=16,BC=12,△ABC的面积为70,则DE=_________14.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数方差根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.15.因式分解:ax3y﹣axy3=_____.16.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.17.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10000元购买中长鼓与用8000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.18.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.三、解答题(共66分)19.(10分)已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC20.(6分)如图,和是等腰直角三角形,,,,点在的内部,且.图1备用图备用图(1)猜想线段和线段的数量关系,并证明你的猜想;(2)求的度数;(3)设,请直接写出为多少度时,是等腰三角形.21.(6分)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•﹣=(1)聪明的你请求出盖住部分化简后的结果(2)当x=2时,y等于何值时,原分式的值为522.(8分)如图,已知在平面直角坐标中,直线l:y=﹣2x+6分别交两坐标于A、B两点,M是级段AB上一个动点,设点M的横坐标为x,△OMB的面积为S.(1)写出S与x的函数关系式;(2)当△OMB的面积是△OAB面积的时,求点M的坐标;(3)当△OMB是以OB为底的等腰三角形,求它的面积.23.(8分)解分式方程(1)(2)24.(8分)定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{1,5,5}=1.(1)根据题意填空:min=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.25.(10分)(1)已知,求的值.(2)化简:,并从±2,±1,±3中选择一个合适的数求代数式的值.26.(10分)如图是一张纸片,,,,现将直角边沿的角平分线折叠,使它落在斜边上,且与重合.(1)求的长;(2)求的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.2、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】五角星的对称轴共有5条,故选C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3、A【分析】分式有意义要求分母不等于零.【详解】解:若分式有意义,即x+20,解得:x≠﹣2,故选A.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式概念是解题关键.4、C【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.5、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【点睛】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.6、C【分析】延长BC交AD于点E,根据三角形外角的性质可求得∠BED=110°,再根据三角形外角的性质得∠BCD=∠BED+∠D,从而可求得∠D的度数.【详解】延长BC交AD于点E,如图所示,∵∠BED=∠B+∠A,且,,∴∠BED=80°+30°=110°,又∵∠BCD=∠BED+∠D,∴∠D=∠BCD-∠BED=130°-110°=20°.故选:C.【点睛】此题主要考查了三角形外角的性质,熟练掌握三角形外角的性质是解此题的关键.7、D【解析】试题分析:根据两角和一边可以确定唯一的一个三角形.考点:三角形的确定8、B【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】解:A.=,故不是最简二次根式;B.,是最简二次根式;C.=,故不是最简二次根式;D.,故不是最简二次根式故选B.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.9、C【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(﹣2,6)关于y轴对称点的坐标为B(2,6).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、C【解析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.二、填空题(每小题3分,共24分)11、360°.【解析】试题分析:五边形的外角和是360°.故答案为360°.考点:多边形内角与外角.12、AC=BC【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【详解】添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为AC=BC.【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13、5【分析】过点D作DF⊥BC于点F,根据角平分线定理得到DF=DE,根据图形可知,再利用三角形面积公式即可解答.【详解】如图,过点D作DF⊥BC于点F∵BD为∠ABC的平分线,DE⊥AB于点E,∴DF=DE∴故答案为:5【点睛】本题考点涉及角平分线定理和三角形的面积,熟练掌握以上知识点是解题关键.14、丙【解析】由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.故答案为丙.15、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.16、50°【分析】根据直角三角形两锐角互余进行求解即可.【详解】∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【点睛】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.17、100;1【分析】设小长鼓的单价为x元,则中长鼓的单价为(x+20)元,根据“用10000元购买中长鼓与用8000元购买小长鼓的数量相同”列出分式方程,并解方程即可得出结论.【详解】解:设小长鼓的单价为x元,则中长鼓的单价为(x+20)元根据题意可得解得:x=1经检验:x=1是原方程的解中长鼓的单价为1+20=100元故答案为:100;1.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.18、或【分析】分∠A为顶角和底角两类进行讨论,计算出其他角的度数,根据特征值k的定义计算即可.【详解】当∠A为顶角时,等腰三角形的两底角为,∴特征值k=;当∠A为底角时,等腰三角形的顶角为,∴特征值k=.故答案为:或【点睛】本题考查了等腰三角形的分类,等腰三角形的分类讨论是解题中易错点.一般可以考虑从角或边两类进行讨论.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据三角形的三边关系和不等式的基本性质即可得出结论;(2)延长BD交AC于E,根据三角形的三边关系和不等式的基本性质即可得出结论;(3)根据三角形的三边关系和不等式的基本性质即可得出结论.【详解】解:(1)∵AB+AD>BD∴AB+AD+DC>BD+DC∴AB+AC>BD+DC(2)延长BD交AC于E∵AB+AE>BD+DE①DE+EC>DC②∴由①+②,得AB+AE+DE+EC>BD+DE+DC整理,得AB+AC>BD+DC(3)∵AD+BD>AB①BD+DC>BC②AD+DC>AC③∴把①+②+③得AD+BD+BD+DC+AD+DC>AB+BC+AC整理,得AD+DB+DC>(AB+BC+AC)又∵由上面(2)式得到:DB+DA<AC+BC①DB+DC<AB+AC②DA+DC<AB+BC③∴把①+②+③得DB+DA+DB+DC+DA+DC<AC+BC+AB+AC+AB+BC整理得DA+DB+DC<AB+BC+AC∴(AB+BC+AC)<DA+DB+DC<AB+BC+AC【点睛】此题考查的是比较线段的和之间的大小关系,掌握三角形的三边关系和不等式的基本性质是解决此题的关键.20、(1),证明见解析;(2);(3)为或或【分析】(1)EB=DC,证明△AEB≌△ADC,可得结论;(2)如图1,先根据三角形的内角和定理可得∠ECB+∠EBC=50°,根据直角三角形的两锐角互余得:∠ACB+∠ABC=90°,所以∠ACE+∠ABE=90°−50°=40°,由(1)中三角形全等可得结论;(3)△CED是等腰三角形时,有三种情况:①当DE=CE时,②当DE=CD时,③当CE=CD时,根据等腰三角形等边对等角可得的值.【详解】解:(1)证明:在与中,;(2),,,,又是等腰直角三角形,,四边形中,;(3)当△CED是等腰三角形时,有三种情况:①当DE=CE时,∠DCE=∠EDC=40°,∴=∠ADC=40°+45°=85°,②当DE=CD时,∠DCE=∠DEC=40°,∴∠CDE=100°,∴=∠ADE+∠EDC=45°+100°=145°,③当CE=CD时,∵∠DCE=40°,∴∠CDE==70°,∴=70°+45°=115°,综上,当的度数为或或时,是等腰三角形.【点睛】本题是三角形的综合题,考查了等腰三角形的判定和性质、三角形全等的性质和判定、等腰直角三角形的性质等知识,第一问证明全等三角形是关键,第二问运用整体的思想是关键,第三问分情况讨论是关键.21、(1)﹣;(2)y=【分析】(1)根据被减数、减数、差及因数与积的关系列式,然后化简分式求出盖住的部分即可;(2)根据x=2时分式的值是1,得出关于y的方程,求解即可.【详解】解:(1)∵,∴盖住部分化简后的结果为;(2)∵x=2时,原分式的值为1,即,∴10﹣1y=2,解得:y=,经检验,y=是原方程的解,所以当x=2,y=时,原分式的值为1.【点睛】本题考查了分式的混合运算及解分式方程,熟练掌握运算法则是解题的关键.22、(1)S=﹣3x+9(0≤x<3);(2)M(1,4);(3).【解析】(1)根据x轴的坐标特点求出点B坐标,再表示出点M坐标,最后利用三角形的面积公式即可得出结论;(2)根据y轴的坐标特点求出点A坐标,进而利用三角形的面积公式求出△AOB的面积,进而求出△OBM的面积,即可得出结论;(3)先判定点M是OB的垂直平分线上,进而求出M的坐标,即可得出结论.【详解】(1)针对于直线l:y=﹣2x+6,令y=0,则﹣2x+6=0,∴x=3,∴B(3,0),∴OB=3,∵点M在线段AB上,∴M(x,﹣2x+6),∴S=S△OBM=×3×(﹣2x+6)=﹣3x+9(0≤x<3),(2)针对于直线l:y=﹣2x+6,令x=0,则y=6,∴A(0,6),∴S△AOB=OA•OB=×6×3=9,∵△OMB的面积是△OAB面积的,∴S△OBM=×9=6,由(1)知,S△OBM=﹣3x+9(0≤<3),∴﹣3x+9=6,∴x=1,∴M(1,4);(3)∵△OMB是以OB为底的等腰三角形,∴点M是OB的垂直平分线上,∴点M(,3),∴S△OBM=×3×3=.【点睛】此题主要考查了坐标轴上点的特点,三角形的面积公式,等腰三角形的性质,掌握坐标系中求三角形面积的方法是解本题的关键.23、(1)无解(2)x=【分析】(1)利用分式方程的解法,解出即可;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论