2022-2023学年广西壮族自治区来宾市数学八上期末质量检测模拟试题含解析_第1页
2022-2023学年广西壮族自治区来宾市数学八上期末质量检测模拟试题含解析_第2页
2022-2023学年广西壮族自治区来宾市数学八上期末质量检测模拟试题含解析_第3页
2022-2023学年广西壮族自治区来宾市数学八上期末质量检测模拟试题含解析_第4页
2022-2023学年广西壮族自治区来宾市数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.2019年下半年猪肉价格上涨,是因为猪周期与某种病毒叠加导致,生物学家发现该病毒的直径约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A. B. C. D.2.已知点与关于轴对称,则的值为()A.1 B. C.2019 D.3.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”4.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①②③④A.1个 B.2个 C.3个 D.4个5.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.1306.已知,且,则代数式的值等于()A. B. C. D.7.以下列数据为长度的三条线段,能组成三角形的是()A.2cm、3cm、5cm B.2cm、3cm、4cmC.3cm、5cm、9cm D.8cm、4cm、4cm8.如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC.一定成立的是()A.②④ B.②③ C.①③ D.①②9.已知,,则代数式的值是()A.6 B.﹣1 C.﹣5 D.﹣610.把的图像沿轴向下平移5个单位后所得图象的关系式是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在三角形纸片中,,折叠纸片,使点落在边上的点处,折痕与交于点,则折痕的长为_____________;12.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.13.使分式的值是负数的取值范围是______.14.现有两根长为4cm,9cm的小木棒,打算拼一个等腰三角形,则应取的第三根小木棒的长是_____cm.15.分解因式:___________.16.如图,小明把一副含45°角和30°角的直角三角板如图摆放,则∠1=____°.17.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.18.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.20.(6分)已知:如图,点是的中点,于,于,,求证:.21.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=1.22.(8分)如图,在中,是边上的一点,平分,交边于点,连结.(1)求证:;(2)若,求的度数.23.(8分)某超市计划购进一批甲、乙两种玩具,已知4件甲种玩具的进价与2件乙种玩具的进价的和为230元,2件甲种玩具的进价与3件乙种玩具的进价的和为185元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进()件甲种玩具需要花费元,请你直接写出与的函数表达式.24.(8分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,这个函数的图象如图所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量.25.(10分)小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?26.(10分)如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC.(1)求证:△ABC≌△DEB;(1)连结AD、AE、CE,如图1.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),这种记数法叫做科学记数法.【详解】数据0.00000032用科学记数法表示为,故本题答案选C.【点睛】本题关键在于掌握科学记数法的定义,科学记数法的形式是由两个数的乘积组成的,表示为,其中一个因数为a(1≤|a|<10),另一个因数为.2、B【分析】根据关于x轴对称的点的坐标规律可求出m、n的值,代入即可得答案.【详解】∵点与关于x轴对称,∴m-1=2m-4,n+2=-2,解得:m=3,n=-4,∴=(3-4)2019=-1.故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;掌握好对称点的坐标规律是解题关键.3、B【分析】将原命题的条件与结论进行交换,得到原命题的逆命题.【详解】解:因为一个命题的逆命题是将原命题的条件与结论进行交换,因此逆命题为“若一个数的平方是正数,则它是负数”.故选:B.【点睛】本题考查四种命题的互相转化,解题时要正确掌握转化方法.4、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B5、C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.6、C【分析】先将因式分解,再将与代入计算即可.【详解】解:,故答案为:C.【点睛】本题考查了代数式求值问题,涉及了利用平方差公式进行因式分解,解题的关键是熟记平方差公式.7、B【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A、2+3=5,故本选项错误.B、2+3>4,故本选项正确.C、3+5<9,故本选项错误.D、4+4=8,故本选项错误.故选B.【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.8、A【解析】根据全等三角形的判定和性质得出结论进而判断即可.【详解】∵点E是等腰三角形△ABD底边上的中点,∴BE=DE,∠AEB=∠AED=90°,∴∠BEC=∠DEC=90°.在△BEC与△DEC中,∵,∴△BEC≌△DEC(SAS)∴BC=CD,∠BCE=∠DCE,∴∠ABC=∠ADC,∴④∠ABC=∠ADC;②AC平分∠BCD正确.故选A.【点睛】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS证明△BEC≌△DEC.9、D【分析】将代数式提公因式,即可变形为,代入对应的值即可求出答案.【详解】解:==3×(-2)=-6故选:D.【点睛】本题主要考查了因式分解,熟练提公因式以及整体代入求值是解决本题的关键.10、C【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将一次函数y=2x+1的图象沿y轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1-5,化简得,y=2x-1.故选:C.【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.二、填空题(每小题3分,共24分)11、4【分析】根据勾股定理求得,,根据折叠的性质求得∠CBE=∠ABE=∠ABC=30°,继而证得BE=AE,在Rt△BCE中,利用勾股定理列方程即可求得答案.【详解】在Rt△ABC中,,设,则,∵,即,解得:,∴,,∵折叠△ABC纸片使点C落在AB边上的D点处,

∴∠CBE=∠ABE,

在Rt△ABC中,∠A=30°,∴∠ABC=60°,∴∠CBE=∠ABE=∠ABC=30°,∴∠ABE=∠A=30°,∴BE=AE,在Rt△BCE中,∠C=90°,,,∵,即,解得:.【点睛】本题主要考查了勾股定理的应用,含30度的直角三角形的性质以及折叠的性质,利用勾股定理构建方程求线段的长是解题的关键.领会数形结合的思想的应用.12、x=1【解析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为x=1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.13、x>【分析】根据平方的非负性可得,然后根据异号相除得负,即可列出不等式,解不等式即可得出结论.【详解】解:∵∴∵分式的值是负数∴解得:故答案为:.【点睛】此题考查的是分式的值为负的条件,掌握平方的非负性和异号相除得负是解决此题的关键.14、1【分析】题目给出两条小棒长为4cm和1cm打算拼一个等腰三角形,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当第三根是4cm时,其三边分别为4cm,4cm,1cm,不符合三角形三边关系,故舍去;当第三根是1cm时,其三边分别是1cm,1cm,4cm,符合三角形三边关系;∴第三根长1cm.故答案为:1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15、【分析】原式利用平方差公式分解即可.【详解】,故答案为.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.16、1【分析】根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【详解】解:如图所示,∵∠BAC=30°,∠ACB=90°,∴∠1=∠ACB+∠BAC=90°+30°=1°,故答案为:1.【点睛】本题考查的是三角形的内角和定理以及三角形外角的性质的运用,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.17、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.18、1【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=1,经检验:x=1是原分式方程的解,且符合题意,所以乙每小时做1个,故答案为1.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.三、解答题(共66分)19、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;

(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;

(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2;(2)∵AP=PQ=t,∴OQ=1﹣2t.∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(1﹣2t,t),N(1﹣t,t),C(1t,t),∴CM=(1t)﹣(1﹣2t)t,CN=(1﹣t)﹣(1t)t,∴CM=CN;(3)作矩形NEFK,则EN=FK.∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QNt,∴HN=QN﹣QHt﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.【点睛】本题考查了一次函数的综合题,正方形的性质,矩形的性质,最短路线问题,正确的作出图形是解题的关键.20、详见解析【分析】根据AAS证明,再根据全等三角形的性质得到BE=DC.【详解】∵是的中点,∴,∵,∴,在和中∴(AAS),∴.【点睛】考查了全等三角形的判定及性质,注意掌握①判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL;②全等三角形的对应边对应角分别相等.21、2x﹣2,-3【解析】解:原式=x2﹣2﹣x2+2x=2x﹣2.当x=3时,原式=2×3﹣2=﹣3.22、(1)见解析;(2)65°【分析】(1)先由角平分线的定义得到∠ABE=∠DBE,然后根据“AAS”即可证明△ABE≌△DBE;(2)由三角形外角的性质可求出∠AED的度数,然后根据∠AED=∠BED求解即可.【详解】解:(1)∵BE平分,∴∠ABE=∠DBE,在△ABE和△DBE中∵∠ABE=∠DBE,BE=BE,∠A=∠BDE,∴△ABE≌△DBE;(2)∵△ABE≌△DBE,∴∠AED=∠BED,∵,,∴∠AED=80°+50°=130°,∴∠AED=130°÷2=65°.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形外角的性质掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.23、(1)每件甲种玩具的进价是40元,每件乙种玩具的进价是35元;(2)当时,;当时,【分析】(1)先找出等量关系:4件甲种玩具的进价与2件乙种玩具的进价的和为230元,2件甲种玩具的进价与3件乙种玩具的进价的和为185元,再列出方程组求解即得.(2)先将的取值范围分两段:和,再根据“总费用=数量进价”列出对应范围的函数关系式.【详解】解:(1)设每件甲种玩具的进价是元,每件乙种玩具的进价是元.由题意得解得:答:每件甲种玩具的进价是40元,每件乙种玩具的进价是35元.(2)∵每件甲种玩具的进价是40元∴当时,;∵购进甲种玩具超过20件,超出部分可以享受7折优惠∴当时,即综上所述:当时,;当时,【点睛】本题主要考查二元一次方程组和函数关系式,根据等量关系列出方程组及根据自变量的取值范围分段确定函数关系式是解题关键.24、(1)(2)【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【详解】解:(1)设y与x的函数表达式为y=kx+b,由题意可得:解得:∴(x>10);(2)当y=0,,∴x=10,∴旅客最多可免费携带行李的质量为10kg.【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.25、(1)s=;(2)37.5;(3)小明在步行过程中停留的时间需减少5min【解析】试题分析:(1)根据函数图形得到0≤t≤20、20<t≤30、30<t≤60时,小明所走路程s与时间t的函数关系式;(2)利用待定系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论