版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的 B.缩小为原来的C.扩大为原来的3倍 D.不变2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.643.已知等腰三角形的一个外角是110〫,则它的底角的度数为()A.110〫 B.70〫 C.55〫 D.70〫或55〫4.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C.+4=9 D.5.如图,在△ABC中,∠B=90º,AC=10,AD为此三角形的一条角平分线,若BD=3,则三角形ADC的面积为()A.3 B.10 C.12 D.156.已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2 B. C.4 D.7.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.8.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm9.下列二次根式中与不是同类二次根式的是()A. B. C. D.10.下列各式不是最简二次根式的是().A. B. C. D.11.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30° B.45° C.50° D.75°12.如图,在平面直角坐标系中,点A坐标为(2,2),作AB⊥x轴于点B,连接AO,绕原点B将△AOB逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)二、填空题(每题4分,共24分)13.点和点关于轴对称,则的值是______.14.计算:=__________;=___________15.平行四边形中,,,则的取值范围是________.16.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____17.已知,则___________.18.已知点在轴上,则的值为__________.三、解答题(共78分)19.(8分)(1)已知的立方根为,的算术平方根为,最大负整数是,则_________,__________,_________;(2)将(1)中求出的每个数表示在数轴上.(3)用“”将(1)中的每个数连接起来.20.(8分)如图,以的边和为边向外作等边和等边,连接、.求证:.21.(8分)已知,点.(1)求的面积;(2)画出关于轴的对称图形.22.(10分)某校八年级全体同学参加了爱心捐款活动,该校随机抽查了部分同学捐款的情况统计如图:(1)求出本次抽查的学生人数,并将条形统计图补充完整;(2)捐款金额的众数是___________元,中位数是_____________;(3)请估计全校八年级1000名学生,捐款20元的有多少人?23.(10分)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.24.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.25.(12分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.26.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为km;D点的坐标为;(2)求线段BC的函数关系式,并写出自变量x的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据分式的基本性质即可求出答案.【详解】解:原式==,故选:A.【点睛】本题考查分式的基本性质,关键在于熟记基本性质.2、D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=1,则正方形QMNR的面积为1.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3、D【分析】根据等腰三角形的一个外角等于110°,进行讨论可能是底角的外角是110°,也有可能顶角的外角是110°,从而求出答案.【详解】解:①当110°外角是底角的外角时,底角为:180°-110°=70°,②当110°外角是顶角的外角时,顶角为:180°-110°=70°,则底角为:(180°-70°)×=55°,∴底角为70°或55°.故选:D.【点睛】此题主要考查了等腰三角形的性质,应注意进行分类讨论,熟练应用是解题的关键.4、A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:,逆流航行时间为:,∴可得出方程:,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.5、D【分析】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.
∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,
∴BD=DE,
∵BD=3,
∴DE=3,
∴S△ADC=•AC•DE=×10×3=15
故选D.【点睛】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.6、C【分析】根据正比例函数的定义解答即可.【详解】∵函数是正比例函数,∴,得m=2或m=4,∵图象在第二、四象限内,∴3-m,∴m,∴m=4,故选:C.【点睛】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.7、C【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着正方形的边.故选C.8、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.9、D【分析】根据同类二次根式的概念进行分析排除,即几个最简二次根式的被开方数相同,则它们是同类二次根式.【详解】A、与是同类二次根式,选项不符合题意;B、是同类二次根式,选项不符合题意;C、是同类二次根式,选项不符合题意;D、是不同类二次根式,选项符合题意;故选:D.【点睛】此题考查了同类二次根式的概念,关键是能够正确把二次根式化成最简二次根式.10、A【分析】最简二次根式:分母没有根号;被开方数不能再进行开方;满足以上两个条件为最简二次根式,逐个选项分析判断即可.【详解】A.不是最简二次根式;B.是最简二次根式;C.是最简二次根式;D.是最简二次根式;故选A【点睛】本题考查最简二次根式,熟练掌握最简二次根式的要求是解题关键.11、B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.12、A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,2),∴OB=2,AB=2∴Rt△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=2,∠CBE=30°,∴CE=BC=,BE=EC=3,∴OE=1,∴点C的坐标为(﹣1,),故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.二、填空题(每题4分,共24分)13、3【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵点A和点B关于y轴对称,∴可得方程组,解得:,∴a-b=3,故答案为:3.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a,b是解题关键.14、1,【分析】直接运用零次幂和负整数次幂的性质解答即可.【详解】解:=1,故答案为1,.【点睛】本题考查了零次幂和负整数次幂的性质,掌握相关性质成为解答本题的关键.15、【分析】根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【详解】解析:四边形是平行四边形,,,,,在中,,,.即的取值范围为.故答案为:.【点睛】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA-OB<AB<OA+OB是解此题的关键.16、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.17、2【分析】先把变形为,再整体代入求解即可.【详解】∵,∴当时,原式.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.18、【分析】根据y轴上点的坐标特点:y轴上点的横坐标是0即可解答.【详解】∵点在轴上,∴3a-2=0,∴a=,故答案为:.【点睛】此题考查数轴上点的坐标特点,熟记点在每个象限及数轴上的坐标特点是解此题的关键.三、解答题(共78分)19、(1)-4,2,-1;(2)见解析;(2)-4<-1<2【分析】(1)根据立方根的定义,算术平方根的定义和最大负整数求出即可;(2)把各个数在数轴上表示出来即可;(2)根据实数的大小比较法则比较即可.【详解】(1)∵﹣64的立方根为a,9的算术平方根为b,最大负整数是c,∴a=-4,b=2,c=-1.故答案为:-4,2,-1;(2)在数轴上表示为:(2)-4<-1<2.【点睛】本题考查了算术平方根,立方根,正数和负数,数轴和实数的大小比较等知识点,能求出各数是解答本题的关键.20、见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB≌△CAD,则BE=CD.【详解】证明:∵△ACE和△ABD都是等边三角形∴AC=AE,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD.∴△EAB≌△CAD(SAS)∴【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件.21、(1)4;(2)见解析【分析】(1)先确定出点A、B、C的位置,再连接AC、CB、AB,然后过点C向x、y轴作垂线,垂足为D、E,根据计算即可;(2)作出点关于x轴的对称点,再连接点即可.【详解】(1)如图,确定出点A、B、C的位置,连接AC、CB、AB,过点C向x、y轴作垂线,垂足为D、E,由图可知:;(2)点关于x轴的对称点为,连接点即为所求,如图所示:【点睛】本题主要考查的是点的坐标与图形的性质,明确是解题的关键.22、(1)50人,条形图见详解;(2)10,12.5;(3)140人.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;(3)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.【详解】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10元;中位数是(元),故答案为:10,12.5;(3)1000×=140(人),∴全校八年级1000名学生,捐款20元的大约有140人.【点睛】本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23、乙到达科技馆时,甲离科技馆还有1600m.【分析】设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意列方程即可得到结论.【详解】解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得:解得x=1.经检验,x=1是原分式方程的解.所以2.5×8×1=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24、(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.25、(1)y=﹣2x+1(2)18元【分析】(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:(1)设y=kx+b(k≠0),由图象可知,,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版信息网络系统建设合同
- 园林绿化工程施工合同示范文本试行3篇
- 2024版电子竞技赛事组织与推广协议3篇
- 幼儿园2024年度棉被采购协议(04版)
- 2024年度某网络公司与某政府机关关于信息化建设合同2篇
- 链家租房合同标准版电子版
- 《中医护理学绪言》课件
- 2024版项目融资合同详解
- 2024年度甘肃省离岗创业项目评估与审计合同3篇
- 2024年度餐饮服务合同标的为餐厅经营权
- 2024版肺结核治疗指南
- 江苏省无锡市经开区2024-2025学年上学期九年级期中考试数学试题
- 2024年智能化工程专业分包合同
- 六年级道德与法治上册 第三单元 我们的国家机构 5《国家机构有哪些》教案2 新人教版
- 体育场馆安全管理与风险排查治理制度
- 2024年消防安全知识培训
- 2024年商标使用许可协议:国际知名品牌在中国市场授权
- 餐饮服务电子教案 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 2024年全国半导体行业职业技能竞赛(半导体芯片制造工赛项)理论考试题库(含答案)
- 北师大版数学一年级上册期中考试试题
- 钢结构厂房施工方案
评论
0/150
提交评论